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Abstract: The United Nations (UN) estimates that an additional 2.5 billion people will reside 

in urban areas by 2050. Due to rapid economic development and urbanization, urban areas 

are responsible for more than 70% of global greenhouse gas (GHG) emissions from final 

energy use. Rapid urbanization will predominantly occur in emerging nations, particularly in 

Asia, where more than four billion people reside, accounting for around 55% of the world’s 

population. However, the temporal and spatial characteristics of urban structure in emerging 

cities and their correlations with GHG emissions are hardly understood, despite the fact that 

urban form is an important determinant of urban sustainability. Given this context, the study 

aims to evaluate the dynamics of urban form using three key measurements—population 

density, Moran’s index, and population gradient coefficient—in the capital cities of South, 

Southeast, and West Asia and investigate how urban form affects CO2 emissions. The study 

employs a modified STRIPAT (Stochastic Impacts by Regression on Population, Affluence, 

and Technology) model as its major framework, using panel data from 2000 to 2019 with a 

five-year gap. The results indicate that the evolution of urban form varies from city to city 

while the population density continues to increase with slight variations in Moran’s and 

population gradient coefficients. Considering the changes in the three indicators over time 

in the cities under study, it can be concluded that urbanization in the researched areas is 

generally getting more compact. Moran’s index is a statistically significant factor concerning 

CO2 emissions, indicating that CO2 emissions could be lowered in cities with more 

clustered forms. The findings of this research have major implications for urban 

policy-makers seeking to explain the dynamics of urban form, how it evolves in developing 

countries, and how CO2 emissions are affected.
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I. Introduction

Urbanization has accelerated substantially over the past decades, 

increasing from 30% in 1950 to 55% in 2018 (United Nations [UN], 

2018). The UN expects an additional 2.5 billion people to dwell in 

metropolitan areas by 2050. With the increased economic development 

and urbanization, urban areas are responsible for more than 70% of 

the global greenhouse gas (GHG) emissions from final energy use (Seto 

et al., 2014).

Rapid urbanization will occur predominantly in developing 

countries, particularly Asia (UNDP, 2017), which is home to more 

than four billion people, or approximately 55% of the global 

population. By 2050, the urban population in the region is projected 

to increase from its current level of 2.1 billion to as high as 3.4 

billion. Moreover, urbanization is often accompanied by a rapid 

increase in energy demand (International Energy Agency [IEA], 2019). 

Therefore, sustainable urbanization in three Asia sub-regions, namely 

Southeast, South, and West Asia, is critical for global climate change 

mitigation, given Asia’s rapid urbanization and vast population. 

Nevertheless, the data and knowledge required to comprehend the 

climate change mitigation risk and opportunities in these areas are 

significantly lacking. Many prior studies have concentrated on 

developed countries, with little attention dedicated to other regions. 

The urban dynamics in these under-developed areas is another 

research gap in climate change mitigation studies. Urban form is the 

pattern of human activities (Tsai, 2005), an important determinant of 

urban sustainability. The advantages of compact urban form are 

well-known from the sustainability perspective (OECD, 2012). Much 
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empirical research on cities in developed countries has demonstrated 

that a compact urban form adds to the effective use of resources and 

decreases environmental pollution (Song and Nam, 2009; Kim and 

Song, 2015; Shin and Yoon, 2022). Urban form is intrinsically related 

to travel demand, hence spatial planning is vital for lowering GHG 

emissions (Ewing and Cervero, 2010; Seto et al., 2014; Song, 2021). 

Buildings are another major source of urban GHG emissions. Mixing 

mid- and high-rise buildings in a compact city reduces energy use. 

However, the temporal and spatial characteristics of urban structure 

in emerging cities and their associations with GHG emissions are 

hardly understood. The populations of cities in developing nations 

will continue to grow in the near future; therefore, examining the 

direction of their urban development and making appropriate 

suggestions for the future are essential.

Given this background, this study aims to assess the dynamics of 

urban form in the capital cities of South, Southeast, and West Asia and 

examine the effect of urban form on CO2 emissions. The study 

employs a modified STIRPAT(Stochastic Impacts by Regression on 

Population, Affluence, and Technology) model as its main framework 

to examine the effect of urban form on CO2 emissions using panel 

data from 2000 to 2019 with a five-year gap. This paper is constructed 

as follows. Section II reviews previous studies on the IPAT model and 

the relationship between urban form and CO2 emissions. Section III 

describes the data collection and analysis, while Section IV reports and 

interprets the results from the analysis. Finally, conclusions are 

presented in Section V, along with policy implications.
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Ⅱ. Literature Review

1. IPAT Model

The IPAT model is a popular empirical model for analyzing the effect 

of economic development on the environment. IPAT is a framework for 

analyzing the effects of population P, affluence A, and technology T on 

the environment I. Ehrlich and Holdren (1971) were the first to suggest 

the IPAT model, which Dietz and Rosa (1997) transformed into 

STIRPAT, a probability model, by adding an error component. Ehrlich 

and Holdren’s argument was to refute the notion that people’s 

contribution to environmental degradation was negligible. Thus, they 

placed population at the center of the equation, highlighting its 

significant impact on the environment. The researchers then extended 

their equation to show the interaction of population, affluence, and 

technology and their nonlinear relationships. In addition to the 

standard IPAT model, various versions have been proposed, including 

the IPBAT by Schulze (2002) and IPACT by Waggoner and Ausubel 

(2002) as shown in <Table 1>. IPBAT extends the basic IPAT model with 

a variable B describing behavior, whereas IPACT adds a variable C 

reflecting consumption. <Table 1> illustrates the evolution of the IPAT 

model throughout time.

STIRPAT is a stochastic model used for empirically testing human 

impacts on the environment, in contrast to the original IPAT, which 

comprises accounting equations. STIRPAT model specifications are as 

follows:

  



･･････････････････････････････････････････(1)
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where I is the total environmental impact, a is the model’s scale, b, 

c, and d are the coefficients of P, A, and T, respectively, that must be 

evaluated for the ith observation, and e is the error term. As indicated 

by the subscript i, these variables (I, P, A, T, and e) vary among the 

observations. Estimation and hypothesis testing are simplified by an 

incremental regression model with logarithmic values for all variables. 

STIRPAT model has been applied to numerous research to examine 

how economic development affects the environment (Lee and Kang, 

2012; Yoon and Song, 2015; Shahbaz et al., 2016; Wang et al., 2017; 

Ding et al. 2022). Furthermore, to test the impact of urban form or 

urbanization on environment such as CO2 emissions, those urban 

factor could be added as a additional independent variable on the 

equation. 

<Table 1> Evolution of IPAT Model

Authors Model Explanation

Ehrlich and 
Holden (1971)

I = PF
Total environmental impact explained by 

population P and impact per capita F

Ehrlich and 
Holden (1972)

I = PAT
Total environmental impact explained by 

population P, affluence A, and technology T

Schulze (2002) I = PBAT
An extended version of IPAT, taking into 

consideration behavior B

Waggoner and 
Ausubel (2002)

I = PACT
An extended version of IPAT, taking into 

consideration consumption per unit of Gross 
Domestic Product[GDP] C

Dietz and Rosa 
(1994)

  



 A stochastic model for IPAT model

2. Urban Form and Energy Consumption

The quantity and characteristics of GHG emissions vary by city 

based on population, socioeconomic status, spatial structure, and 

infrastructure (Seto et al., 2014). Spatial planning is crucial for 
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reducing GHG emissions since urban form is inextricably linked to 

travel demand (Ewing and Cervero, 2010; Seto et al., 2014; Song, 

2021). Another critical source of GHG emissions in cities is the 

building sector. Building energy usage can be reduced by mixing mid- 

and high-rise structures in a compact metropolitan area. Effective 

urban mitigation strategies should integrate various spatial planning 

features, such as high-density residential and employment areas 

placed together, diverse land use, enhanced accessibility, and efficient 

public transportation (Seto et al., 2021). 

Numerous cities have been the subjects of empirical studies on the 

effect of urban patterns on energy and GHG emissions. For example, 

cross-sectional data analysis of Korean cities revealed that compactness 

characteristics contribute to a reduction in transportation energy (Kim 

and Song, 2015; Song and Nam, 2009). Population density has the 

greatest impact on the usage of public transit and non-motorized travel 

in Korea, according to a meta-analysis of historical empirical data for 

Korean cities (Song, 2021). Ye et al. (2015) explored the impact of 

compactness on urban household energy use using remote sensing data 

for China and found similar results—a considerable reduction in energy 

usage in areas with higher densities of development. 

While some research has employed an IPAT model to quantify the 

influence of urbanization on the environment, few studies have 

integrated the impact of urban form with this approach. Using a 

STIRPAT model, Wang et al. (2017) explored the effect of urban form 

on CO2 emissions for four Chinese mega cities—Beijing, Tianjin, 

Shanghai, and Guangzhou—using total urban area, the number of 

patches, edge density, and population density as major metrics. 

Interestingly, the results indicated that urban density is positively 
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correlated with CO2 emissions, contrasting the conventional view in 

which a compact urban form is more beneficial for energy consumption 

and associated GHG emissions. Furthermore, Ding et al. (2022) tested 

the impact of urban compactness on CO2 emissions for 295 cities in 

China using a STIRPAT model. Five metrics were used to measure urban 

compactness, including patch density, landscape shape index, the 

coefficient of the patch area, patch cohesion index, and aggregation 

index. Their findings showed that, beyond a certain threshold, the effect 

of urban compactness on CO2 emissions declines. 

In summary, few studies have been conducted on the effect of 

urban form on CO2 emissions using the STIRPAT model, particularly 

for rapidly expanding cities in the three sub-Asian regions. In 

addition, recent research undertaken on growing cities in China has 

revealed conflicting findings about the effect of urban form. Our 

study contributes to this body of knowledge by evaluating the 

dynamics of urban form changes and examining their effects on CO2 

emissions in understudied Asian cities.

Ⅲ. Data and Methodology

1. Study Scope

Our investigation encompasses the capital cities of Southeast, 

South, and Western Asia. Based on the availability of data, fifteen 

cities have been chosen for analysis, as depicted in <Figure 1> and 

<Table 2>. To explore the dynamics of urban form changes and their 

associations with GHG emissions, the temporal scope of the research 

covers from 2000 to 2019, with a five-year data collection gap.
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<Figure 1> Study Area

<Table 2> List of Cities

Region City

South Asia Delhi (India), Kathmandu (Nepal), Dhaka (Bangladesh)

Southeast Asia
Bangkok (Thailand), Jakarta (Indonesia), Kuala Lumpur (Malaysia), 
Manila (Philippines), Phnom Pehn (Cambodia)

West Asia
Ad Dawhah (Qatar), Al Kuwayt (Kuwait), Amman (Jordan), Baghdad 
(Iraq), Beirut (Lebanon), Manama (Bahrain), Muscat (Oman)

2. Data and Model

To examine the impact of urban form on CO2 emissions, we 

modified the STIRPAT model developed by Dietz and Rosa (1994) by 

adding urban form factors. Additionally, to test the validity of urban 

form factors as significant variables, the study started with an original 

STIRPAT model for fifteen cities. Since the impact of urban form on 

CO2 emissions is of interest, the dependent variable is CO2 emissions. 

The basic STIRPAT model is specified as Eq. (2): 

lnCEit= lna + b1lnPOPit + b2lnGDPit + b3lnEffit + ui + eit･･････(2)

where CEit is the CO2 emissions of city i at year t (t = 2000, 2005, 
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2010, 2015, and 2019); POPit, GDPit, and Effit are the control variables 

of population, gross domestic product (GDP) per capita, and GDP per 

energy, respectively; and ui and eit are the fixed effect and random 

error, respectively. 

The CO2 emissions of each city were estimated by combining two 

datasets: national CO2 emissions from IEA and the urban share of CO2 

emissions from Guerny et al. (2022). No public data was available for 

urban CO2 emissions, in particular for cities in developing countries. 

Thus, we estimated them by multiplying national CO2 emission values 

with the urban share estimated by Guerny et al. (2022), which 

presented the CO2 urban share based on a combination of the urban 

population share, urban carbon footprint, SSP-based national CO2 

emissions, and recent analysis of per capita urban CO2-eq trends. In 

addition, GDP per capita represents A, and the energy efficiency, 

defined as the GDP per unit of energy consumption, serves as T in 

our STIRPAT model. The expanded model that includes urban form 

factors are specified in Eq. (3). We have used three indicators to 

measure urban form based on Tsai (2005): population density, 

Moran’s index and coefficient of population gradient curve. The 

following is the final model for the analysis.

lnCEit=lna + b1lnPOPit + b2lnGDPit + b3lnEffit + b4lnDensityit +

      b5lnMoranit + b6lnGradientit +ui + eit･･････････････････(3)

where Densityit, Moranit, and Gradientit are the population density, 

Moran’s index, and coefficient of population gradient curve of city i 

at year t, respectively. 

Without annual public data available for the urban population in 
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the studied area, we used WorldPop data, open-source data that 

offers grid population data from 2000 to 2020 with a high resolution 

of 1km units(WorldPop, 2022). The WorldPop research programme, 

housed in the School of Geography and Environmental Science at the 

University of Southampton, is a multi-sector team of researchers, 

technicians and project specialists that produce data on population 

distributions and characteristics at high spatial resolution. The 

gridded population data was clipped and extracted using a city 

boundary obtained from DIVA-GIS (2022) for the urban form factor 

calculations. 

Density is a commonly used indicator to measure urban form, 

owing to its easy measurement and usefulness in controlling urban 

development intensity (OECD, 2012). Moran’s index represents the 

degree of clustering, measured by the spatial auto-correlation 

coefficient using ArcGIS. It ranges from −1 to 1, with a high positive 

value representing areas with similar densities that are highly 

clustered; a Moran’s index near zero indicates random dispersal, and 

a value of −1 denotes a “chessboard” pattern of development (Tsai, 

2005). Lastly, we estimated the population gradient coefficient by 

fitting the negative exponential model to the equation using the 

population density and distance from the CBD (central business 

district). Clark (1951) first proposed the concept of a population 

gradient curve to measure urban density. This curve illustrates how 

urban population density varies with distance from the CBD. 

Considering that the CBD is the center of population and business 

agglomeration, the grid cell with the highest population was 

considered the CBD of each city (Jang and Song, 2022). Finally, we 

determined the gradient coefficient by fitting a negative exponential 
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model to the equation using population density and distance from the 

CBD. <Table 3> lists the variables and their descriptions.

<Table 3> Data Description

Variables Description Unit Transformation Source

Impact
(CE)

Urban CO2 emissions
ton
CO2

logged IEA

Affluence
(GDP)

GDP per capita
US$ in 
2022

logged World Bank

Technology
(Eff)  


US$/TJ logged World Bank

Population (POP) Population Person logged

World popUrban
Form

Population 
Density 

(Density)
 

 Person/
㎢

logged

Moran’s 
Index 

(Moran)
  







 



- logged

Population 
Gradient 

Coefficient
(Gradient)

ln  ln 

 

ln ln - logged

Ⅳ. Empirical Result

1. Descriptive Statistics

According to the descriptive statistics, a noticeable difference is 

present in the variables among the research areas <Table 4>. The 

average population of each study area is 3,137,440 persons. The GDP 

per capita is an average of US$10,392, ranging from US$229 to 

US$67,403. The average energy efficiency is US$122,015/TJ, while the 

difference in energy efficiency between the lowest- and highest- 

performing cities is greater than 15 times.
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<Table 4> Descriptive Statistics

Variables Category Obs Mean Std. dev. Min Max

Impact

overall 75 103478.7 222330.7 903.5 1311000.0

between 15 208973.8 2778.2 833034.4

within 5 90118.9 -320015.5 581444.3

Affluence

overall 75 10392.3 15231.0 229.5 67403.1

between 15 14994.9 646.9 54830.2

within 5 4391.9 -14461.6 22965.3

Population

overall 75 3137440.0 4549330.0 97298.7 19000000.0

between 15 4604172.0 99495.0 16000000.0

within 5 802411.8 297379.9 6132236.0

Technology

overall 75 122015 62180.3 16317.2 252072.7

between 15 44301.5 36859.8 193743.4

within 5 44831.4 27856.7 230255.8

Population Density

overall 75 12996.28 13612.47 219.6359 63510.84

between 15 12271.87 224.5937 42680.7

within 5 6545.299 -8507.535 51255.48

Moran’s index

overall 75 0.6239476 0.275002 -0.045344 0.943288

between 15 0.281953 0.0167862 0.9383646

within 5 0.020633 0.5275954 0.6735874

Population Gradient 
Coefficient

overall 75 -131.8904 226.6943 -959.2775 -4.557199

between 15 230.8975 -937.8175 -6.614693

within 5 30.95889 -262.1596 44.46492

2. Characteristics of Urban Form

This section explores the urban form characteristics of the region’s 

capital cities and analyzes their dynamic changes from 2000 to 2019. 

<Figure 2> depicts the 2019 1×1 km grid population distribution used 

to calculate urban form indicators for each city. The cities have 

varied characteristics in terms of population, area, and population 

distribution. The following provides a more detailed analysis of the 

three major urban form indicators.

Population density is a commonly used indicator in urban planning, 
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providing a proxy for urban compactness. While higher density is 

generally known to contribute to urban sustainability, a standard 

threshold for optimal urban density is not established. <Figure 2> 

shows that some of the studied cities in the region have relatively 

high densities. For example, if we compare the densities of studied 

areas with the density of Seoul, Korea, having one of the highest 

densities of 15,699 people/km2(OECD, 2012), Beirut and Manila are 

even denser as of 2019. The density of Jakarta is relatively similar to 

Seoul at 12,311 people/km2. On the other hand, Ad Dawha and 

Muscat have very low densities, with less than 1,000 people/km2. The 

densities of other cities under study are similar to that of Busan in 

Korea, the second largest and densest city in the country.

Although population density is a valuable metric of urban density, 

it fails to reflect the distributional characteristics of the population. 

In this regard, Moran’s index is a useful metric for measuring the 

degree of clustering within a city. As illustrated in <Figure 2>, the 

population distribution in the majority of cities show high level of 

spatial autocorrelation, indicating a continuous development pattern 

rather than a leap frogging pattern. In particular, the Moran’s index 

for four cities, namely Amman, Bangkok, Delhi, and Muscat, was 

greater than 0.9, indicating a very strong spatial autocorrelation. 

Among a total of fifteen cities included in this study, nine had a 

Moran’s index greater than 0.5.
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<Figure 2> Distribution of Population in 2019

  D-population density(pp/㎢); M-Moran’s Index; and G-Coefficient of population gradient curve
  Source: WorldPop(2022)
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The slope of the population gradient curve is a useful measure of 

centrality. The population density gradient function is a modified 

version of the distance-decay model that depicts the decrease in 

population density at a specific urban site as its distance from the 

city center increases (Yoon and Lee, 2013). The urban population 

density and its slope rely on the city’s characteristics. Consequently, 

the slope of the population gradient curve reflects the spatial 

structure characteristics of the city. However, a comparison of the 

coefficients between cities should be made with caution since the 

values can be sensitive to city size. In fact, the results indicate that 

smaller cities, such as Beirut, Manama, and Manila, have much larger 

gradient curve coefficients than other cities. 

<Figure 3> Annual Growth Rate of Urban Form Indicators (2000-2019)

<Figure 3> depicts the annual growth rate of three urban form 

indices for each city between 2000 and 2019. With the exception of 

Manila, all cities experienced a significant increase in population 

density. Specifically, the population densities of Ad Dawhah and 

Kathmandu expanded over tenfold. In terms of Moran’s index, average 
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yearly growth rates of 0.018% were observed for all cities during the 

examined time period. Although half of the cities suffered a decrease 

in Moran’s index, the absolute changes are not noteworthy. 

In terms of the coefficient of the population gradient curve, the 

average yearly growth was 0.031%, excluding Manama, which experienced 

a significant increase. In addition, all cities except Baghdad, Delhi, 

Kuala Lumpur, and Muscat saw an increase in population gradient curve 

coefficients. Given that a gradient curve’s coefficient is a proxy for 

centrality, we may conclude that the centrality of the capital cities in 

the three Asia sub-regions increases with time.

A compact urban form is generally characterized by a higher 

population density (Jang and Song, 2020; Ewing and Cevero, 2010; 

OECD, 2012), higher Moran’s index (Tsai, 2005), and larger coefficient 

of population gradient curve (Yoon and Lee, 2013). However, given the 

multi-dimensional characteristics of a compact city, three factors are 

insufficient to determine whether a city is compact. Nevertheless, based 

on the changes in the three indicators over time, evaluating whether the 

overall urban form is becoming more compact or expanding is a 

reasonable approach. From 2000 to 2019, density grew in all cities 

except one, Manila, and Moran’s index did not change much, with an 

annual growth rate between −0.01 and 0.01, except Al Kuwayt. Most of 

the cities except Bagdad, Delhi, and Kuala Lumpur experienced slight 

increase in population gradient coefficients, indicating that their 

centrality has been somewhat strengthened. In addition, the CBDs of 

those three cities with decreased population gradient coefficients have 

been intensified with increased density. Thus, the changes in the three 

indicators generally suggest that urbanization in the research area is 

generally becoming more compact.
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3. Impact of Urban Form on CO2 emissions

In this research, we performed a panel analysis using the STIRPAT 

model and conducted an empirical analysis to determine the impact of 

urban form on CO2 emissions. As previously noted, the STIRPAT model 

incorporated three urban form–related variables. The coefficient in this 

model can be interpreted as elasticity of CO2, which is the percentage 

change in CO2 emissions due to the change in the independent 

variables, since all variables have been replaced by logarithms. To fit 

the best model for the analysis, we conducted tests shown in <Table 5>. 

The results demonstrated that M3, the model including urban form 

indicators, had a better ability to explain the impact on CO2 emissions 

better than the standard STIRPAT model. 

<Table 5> Model Fitting

Model
M1:

Unconditional
M2:

I-PAT
M3:

I-PATU

CO2 Emissions CO2 Emissions CO2 Emissions

Population

　

0.432***
(-0.07)

0.710***
(-0.21)

Affluence
0.926***
(-0.11)

0.895***
(-0.10)

Technology
-0.469***

(-0.14)
-0.429***

(-0.13)

Population density
-0.775***

(-0.21)

Moran’s Index
-2.715**
(-1.04)

Population Gradient 
Coefficient

0.032
(-0.05)

_cons
10.398***

(-0.39)
2.103*
(-0.95)

-0.704
(-1.26)

N 75 75 75

sigma_u 1.504 0.981 0.912

sigma_e 0.476 0.180 0.174

rho 0.909 0.967 0.965

Standard errors in parentheses.
*p< 0.05, **p< 0.01, ***p< 0.001
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The F test result for pooled OLS (Ordinary Least Squares) assuming 

homoscedasticity of the error terms was found to be rejected at the 

1% significance level as a result of analysis using pooled OLS, 

fixed-effects model (FEM), and random-effects model (REM). This 

finding suggests that fixed- and random-effects models are more 

appropriate than pooled OLS. The fixed-effect model is optimal 

because the random-effect model was rejected by the Hausman test 

at a significance level of 1%. The effect of each variable on CO2 

emissions is as follows. 

<Table 6> Result of Panel Analysis

Independent
Variable

CO2 Emissions

Pooled OLS FEM REM

Population
0.731***
(-4.77)

0.375***
(-5.67)

1.187***
(-5.60)

Affluence
0.341***
(-3.46)

1.068***
(-9.96)

0.911***
(-8.79)

Technology
0.588**
-2.72

-0.592***
(-4.77)

-0.446***
(-3.54)

Urban 
Form

Population density
-0.122
(-0.63)

0
(.)

-0.775***
(-3.63)

Moran’s
Index

-0.0785
(-0.07)

-2.737*
(-2.41)

-2.715**
(-2.61)

Population Gradient 
Coefficient

-0.347**
(-3.08)

0.042
(-0.96)

0.032
(-0.69)

Cons
-7.003**
(-3.01)

4.263***
(-4.65)

-0.704
(-0.56)

R2-within

0.7374

0.8780 0.8731

R2-between 0.0799 0.4865

R2-overall 0.1113 0.5114

Test of Pooled OLS - Prob > F = 0.0000 Prob > chi2 = 0.0000

Hausman Test - Prob > chi2 = 0.0001

* p < 0.05, ** p < 0.01, *** p < 0.001

First, population, affluence, and energy efficiency have statistically 
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significant effects on CO2 emissions. Population and GDP per capita 

were found to have a positive effect on CO2 emissions, while the effect 

of energy efficiency was negative. Our findings, shown in <Table 6>, 

are congruent with those of earlier research. For instance, Wu et al. 

(2021) conducted a panel data study on industrialized countries using 

an enhanced STIRPAT model and indicated that population and 

economic expansion lead to an increase in CO2 emissions, whereas 

energy efficiency plays a key role in reducing CO2 emissions. The 

analysis revealed that the traditional factors, P, A, and T, have similar 

effects on emissions in emerging countries as in wealthy nations. 

Only the Moran’s index among the urban form factors had a 

statistically significant effect on CO2 emissions in fixed-effect model. 

Specifically, a 1% increase in the Moran’s index reduced CO2 emissions 

by approximately 3%. The size of elasticity is the largest compared 

with the other traditional variables, confirming the significance of 

urban form on GHG emissions. In the meantime, population density 

variable dropped due to collinearity in the fixed-effect model. 

However, its significance in the random-effect model indicates its 

potential contribution to urban GHG emissions. Both of significant 

urban form factors, population density and Moran’s Index, have 

negative elasticity, meaning that higher density and Moran’s Index 

contributing to a reduction in CO2 emissions in a city. Thus, urban 

population distribution as well as population density should be 

considered a critical urban planning factor to reduce CO2 emissions 

and achieve sustainable development.
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Ⅴ. Conclusion

As cities are considered major contributors and potential remedies 

for CO2 emissions, understanding the dynamics of urban form and 

how it affects CO2 emissions in developing nations is vital. Much 

research, however, has focused on either national or city levels in 

developed countries. To fill the gap, the current study aims to capture 

the dynamics of urban form and its impact on CO2 emissions of 15 

cities in South, Southeast, and West Asia from 2000 to 2019. 

The study reports that the densities of the cities under study are 

steadily increasing while the rate of urban population growth varies 

from city to city. Our study also analyzed dynamic changes in the 

distribution of population using Moran’s index and the population 

gradient curve from the CBD to the edge of the city. Considering the 

changes in the three indicators over time in the studied cities, we 

may conclude that urbanization in the research area is generally 

becoming more compact, which is typically regarded as a positive 

trend. 

Using a modified STIRPAT model, we also conducted a panel study 

to investigate how urban form affects CO2 emissions. The Moran’s 

index was identified as a significant variable influencing CO2 

emissions, with a negative sign. Notably, its elasticity is stronger than 

that of other traditional variables, such as population, affluence, and 

technological efficiency. While the result is consistent with previous 

findings that a compact city has lower CO2 emissions (Baur et al., 

2015; Makido et al., 2012; Christen et al., 2011; Ewing and Rong, 

2008), a strong elasticity of an urban form variable reflects its relative 

importance even when compared to other factors regarded as critical 
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determinants of CO2 emissions, especially in developing countries. 

This paper has significant policy implications for governments, 

developers, municipalities, and urban planners in developing countries 

to understand the dynamics of urban form and its transformation over 

time, along with their impact on CO2 emissions. Our empirical study 

indicates that spatial planning can play a significant role in mitigating 

climate change in rapidly growing cities. For a better understanding of 

urban dynamics on CO2 emissions, additional research is required, 

particularly an investigation of the relationship between urban form 

and CO2 emissions per sector in developing nations. To conduct such 

research, however, various data including CO2 emissions by sectors 

and economic status must be collected and disclosed at the urban level 

(Creutzig et al., 2019). When the updated data collected, a follow-up 

research could be delivered more deeply in linkage between urban 

form and CO2 emissions.
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