제2차
물환경관리 기본계획 (’16~’25) 부록
제1부 평가 및 전망

1. 그간의 성과 평가 ... 3
 가. 물환경 관리정책 추진 경과 ... 3
 나. 1차 물환경관리기본계획 평가 .. 4
 1) 종합평가 .. 4
 2) 부분별 평가 .. 6
 3) 주요 정책 성과 ... 23
 4) 투자 실적 평가 ... 29

2. 물환경관리 여건 변화와 전망 ... 31
 가. 기후변화에 따른 수질 및 수생태 변화 31
 나. 4대강 본류 하천환경의 근본적 변화 37
 다. 사회·경제·기술 변화에 따른 물환경 이슈 44
 라. 물환경 여건 변화 .. 48
 마. 물환경 여건 SWOT 분석 ... 53
제2부 5대 핵심전략별 주요과제

1. 건강한 물순환 체계 확립 ... 57
2. 유역통합관리로 깨끗한 물 확보 .. 97
3. 수생태계 건강성 제고로 생태계서비스 증진 158
4. 안전한 물환경서비스 제공 .. 189
5. 물환경의 경제•문화적 잠재력 극대화 .. 238

제3부 기반 및 역량 강화 전략

1. 거버넌스 활성화 ... 275
2. 과학기술 고도화 ... 319
3. 재정관리 효율화 ... 370
평가 및 전망

1. 그간의 성과 평가

가. 물환경 관리정책 추진 경과

전국 단위의 수질보전대책 수립은 '89년 「맑은물 공급 종합대책」을 시작으로 '06년 「1차 물환경관리기본계획(’06∼’15)」수립

'89년 초 수돗물 수질오염이 사회문제화 되면서 총리실 주관으로 「맑은물 공급 종합대책」수립(’89.9, 국무총리실)

최초의 전국 단위의 수질보전대책

'96년까지 2조 1,600억원을 투자하여 하수처리장 등을 건설하고, ’90년 7월 팔당호, 대청호 지역을 「상수원 수질보전 특별대책지역」으로 지정하는 등의 추진 대책을 담고 있음

'93년 폐농오염사고 및 낙동강, 영산강 수질악화를 계기로 「맑은물 공급 종합대책」전면 수정(’93.7, 환경부)

'94년초 낙동강 유기용제 사고를 계기로 「수질관리개선대책」 수립(’94.1, 국무총리실)

’96년부터 ’05년까지 하수처리장 건설 등 수질개선에 약 27조원을 투입 계획

'98∼’00년 「4대강 물관리종합대책」 수립

지속가능한 유역공동체 건설을 공극적인 목표로, 발원지에서 하구까지 맑은 물이 흐르는 하천, 생명력이 넘치는 건강한 유역, 아름다운 자연과 더불어
살아가는 쾌적한 환경, 유역구성원들이 수질보전을 위해 협력하는 사회를 건설하기 위한 계획

- 오염종량관리제도, 수변구역제도, 물이용부담금제도, 상수원지역 주민 지원 및 토지매수제도 등 강력하고 선진적인 물관리정책 도입

'06년 「제1차 물환경관리 기본계획」 수립('06.9, 환경부)
- BOD 등 이·화학적 오염물질 관리 위주의 물환경 정책에서 탈피
- 국민 건강과 생태적 건강성을 정책의 최우선에 두고 ‘생태적으로 건강한 하천과 유해물질로부터 안전한 물환경 조성’을 목표로 함

나. 1차 물환경관리기본계획 평가

1) 종합 평가

- 주요 지표 달성도

 전국 하천 “좋은 물” 비율, 하수도보급률, 국민건강보호 기준 항목 확대, 수변지역 생태벨트 조성은 목표에 근접(일부 조기 달성)
 - (좋은 물 비율) ’05년 77% → ’15년 83.3%(114개 중 95개소)
 - (하수도 보급률) ’05년 81% → ’14년 92.5%
 - (건강보호 기준항목) ’05년 9개 → ’15년 20개(11개 유해물질 추가)
 - (수변생태벨트 조성률) ’05년 0% → ’15년 25.5%

1) 좋은 물은 생태환경기준 등급 중 “매우 좋음”, “좋음”, “약간 좋음”에 해당하는 물을 말함(수질 및 수생태계 목표기준 평가 규정)
2) 국립환경과학원, 2015년 전국수질평가보고서
3) 전국은 117개 중권역이나 북한지역 2개, 제주지역 1개(상시 건천) 등 3개 중권역 제외
4) 환경부, 2015, 2015 환경통계연감
5) 환경부, 2015, 환경백서 2015
6) 환경부, 2015, 환경백서 2015
다만 훼손된 하천구간 자연형 복원은 계획대비 성과가 다소 미흡
-(하천구간 자연형 복원 비율) '05년 1% → '15년 10.3%

〈표 1〉 당초 계획(’06)의 주요 지표 평가

<table>
<thead>
<tr>
<th>지표 항목</th>
<th>’05년(’04)</th>
<th>’15년목표</th>
<th>’15년 실적</th>
</tr>
</thead>
<tbody>
<tr>
<td>좋은 물 비율</td>
<td>76%7)</td>
<td>85%</td>
<td>83.3%8)</td>
</tr>
<tr>
<td>훼손된 하천구간 자연형 복원 비율</td>
<td>1%</td>
<td>→ 25%</td>
<td>10.3%</td>
</tr>
<tr>
<td>수변생태벨트(REB)조성률</td>
<td>0%</td>
<td>→ 29.3%</td>
<td>68.6%9)</td>
</tr>
<tr>
<td>국민건강보호기준(항목)</td>
<td>9개</td>
<td>→ 30개</td>
<td>20개10)</td>
</tr>
<tr>
<td>-특성수질유해물질관리(항목)</td>
<td>17개</td>
<td>→ 35개</td>
<td>28개11)</td>
</tr>
<tr>
<td>하수도 보급률</td>
<td>81%</td>
<td>→ 90%</td>
<td>92.5%(’14)</td>
</tr>
</tbody>
</table>

투자실적 평가

지난 10년 간(’06～’15) 투자실적은 계획대비 약 102.04% 투자

〈표 2〉 사업부문별 투자실적(’06～’15)

<table>
<thead>
<tr>
<th>구분</th>
<th>계획(A)</th>
<th>실적(B)</th>
<th>계획대비 투자(B/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>합 계</td>
<td>32조7,436억원</td>
<td>33조4,107억원</td>
<td>102.04%</td>
</tr>
<tr>
<td>수생태복원</td>
<td>4조5,498억원</td>
<td>4조4,210억원</td>
<td>97.17%</td>
</tr>
<tr>
<td>위해성관리</td>
<td>1조9,710억원</td>
<td>3조3,521억원</td>
<td>170.07%</td>
</tr>
<tr>
<td>비점오염원</td>
<td>1조2,576억원</td>
<td>5,408억원</td>
<td>43.00%</td>
</tr>
<tr>
<td>축산폐수처리장</td>
<td>4,142억원</td>
<td>8,563억원</td>
<td>206.74%</td>
</tr>
<tr>
<td>하수도</td>
<td>24조5,510억원</td>
<td>24조2,405억원</td>
<td>98.74%</td>
</tr>
</tbody>
</table>

7) 당초계획의 구간기준 비율이 아닌 ’06년에 마련된 중권역 기준으로 유사지점 오염도 등을 활용하여 산정한 비율임
8) 국립환경과학원, 2015년 전국수질평가보고서
9) 환경부, 2015, 환경백서 2015
10) 건강보호기준항목(20) : 카드뮴, 비소, 시안, 수은, 유기인, 납, 6가크롬, PCB, PCE, 1,4-다이옥세인, 사업화탄소, 1,2-디클로로에틸렌, 디클로로에틸렌, 벤젠, 헥사클로로벤젠, 클로로포름, 포름알데히드, 디에틸헥실프탈레이트, 안티몬, ABS
11) 특정수질유해물질관리항목(28) : 카드뮴과 그 화합물, 납과 그 화합물, 비소와 그 화합물, 수은과 그 화합물, 수은화합물, 유기인 화합물, 6가크롬 화합물, 카드뮴과 그 화합물, 테트라클로로에틸렌, 트리클로로에틸렌, 폴리클로로에틸렌, 셀레늄과 그 화합물, 벤젠, 사염화탄소, 1,1-디클로로에틸렌, 1,2-디클로로에틸렌, 클로로포름, 1,4-다이옥세인, 디에틸헥실프탈레이트(DEHP), 염화비닐, 아크릴로니트릴, 브로모포름, 아크릴아미드, 나프탈렌, 폴알데하이드, 에피클로로히드린
12) 환경부, 2015, 2015 환경통계연감
2) 부문별 평가

- 수질변화 추이(대강 대표지점 수질현황)

- BOD 변화 추이

<table>
<thead>
<tr>
<th>구분</th>
<th>한강(팔당댐)</th>
<th>낙동강(물금)</th>
<th>금강(대청댐)</th>
<th>영산강(주암댐)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>연평균</td>
<td>월최고치</td>
<td>연평균</td>
<td>월최고치</td>
</tr>
<tr>
<td>2005</td>
<td>1.1</td>
<td>1.5(4월)</td>
<td>2.6</td>
<td>4.0(3월)</td>
</tr>
<tr>
<td>2006</td>
<td>1.2</td>
<td>1.9(5월)</td>
<td>2.7</td>
<td>5.0(3월)</td>
</tr>
<tr>
<td>2007</td>
<td>1.2</td>
<td>1.7(3,4월)</td>
<td>2.6</td>
<td>4.6(3월)</td>
</tr>
<tr>
<td>2008</td>
<td>1.3</td>
<td>2.0(3,4월)</td>
<td>2.4</td>
<td>4.0(2월)</td>
</tr>
<tr>
<td>2009</td>
<td>1.3</td>
<td>2.4(3월)</td>
<td>2.8</td>
<td>5.1(2월)</td>
</tr>
<tr>
<td>2010</td>
<td>1.2</td>
<td>1.8(5월)</td>
<td>2.4</td>
<td>5.4(2월)</td>
</tr>
<tr>
<td>2011</td>
<td>1.1</td>
<td>1.6(4월)</td>
<td>1.5</td>
<td>2.2(12월)</td>
</tr>
<tr>
<td>2012</td>
<td>1.1</td>
<td>1.8(3월)</td>
<td>2.4</td>
<td>3.8(3월)</td>
</tr>
<tr>
<td>2013</td>
<td>1.1</td>
<td>1.8(6월)</td>
<td>2.3</td>
<td>3.2(9월)</td>
</tr>
<tr>
<td>2014</td>
<td>1.2</td>
<td>1.9(4월)</td>
<td>2.3</td>
<td>3.0(7월)</td>
</tr>
<tr>
<td>2015</td>
<td>1.3</td>
<td>1.9(8월)</td>
<td>2.2</td>
<td>3.1(8월)</td>
</tr>
</tbody>
</table>

05년 이후 최고치 1.3 2.4 2.8 5.4 1.1 1.7 1.1 1.5

자료: 환경부, 2016. 물환경정책 통계자료
<table>
<thead>
<tr>
<th>년도</th>
<th>한강(팔당댐)</th>
<th>낙동강(물금)</th>
<th>금강(대청댐)</th>
<th>영산강(주암댐)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>3.5</td>
<td>4.0</td>
<td>3.2</td>
<td>2.5</td>
</tr>
<tr>
<td>2006</td>
<td>3.3</td>
<td>4.0</td>
<td>3.3</td>
<td>2.7</td>
</tr>
<tr>
<td>2007</td>
<td>3.6</td>
<td>5.7</td>
<td>3.1</td>
<td>2.7</td>
</tr>
<tr>
<td>2008</td>
<td>3.8</td>
<td>5.9</td>
<td>3.5</td>
<td>2.6</td>
</tr>
<tr>
<td>2009</td>
<td>3.8</td>
<td>7.1</td>
<td>3.8</td>
<td>3.0</td>
</tr>
<tr>
<td>2010</td>
<td>3.9</td>
<td>6.4</td>
<td>3.8</td>
<td>3.1</td>
</tr>
<tr>
<td>2011</td>
<td>3.8</td>
<td>5.7</td>
<td>3.9</td>
<td>3.1</td>
</tr>
<tr>
<td>2012</td>
<td>3.7</td>
<td>6.2</td>
<td>4.7</td>
<td>3.0</td>
</tr>
</tbody>
</table>

자료: 환경부, 2016, 물환경정책 통계자료
T-P 변화 추이

표 5 T-P 변화 추이(‘05∼’15)

<table>
<thead>
<tr>
<th>구분</th>
<th>한강(팔당댐)</th>
<th>낙동강(물금)</th>
<th>금강(대청댐)</th>
<th>영산강(주암댐)</th>
</tr>
</thead>
<tbody>
<tr>
<td>연평균</td>
<td>월최고치</td>
<td>연평균</td>
<td>월최고치</td>
<td>연평균</td>
</tr>
<tr>
<td>2005</td>
<td>0.047</td>
<td>0.103(9월)</td>
<td>0.129</td>
<td>0.200(7월)</td>
</tr>
<tr>
<td>2006</td>
<td>0.055</td>
<td>0.116(8월)</td>
<td>0.136</td>
<td>0.207(7월)</td>
</tr>
<tr>
<td>2007</td>
<td>0.051</td>
<td>0.082(9월)</td>
<td>0.139</td>
<td>0.175(8월)</td>
</tr>
<tr>
<td>2008</td>
<td>0.042</td>
<td>0.080(7월)</td>
<td>0.142</td>
<td>0.175(1월)</td>
</tr>
<tr>
<td>2009</td>
<td>0.034</td>
<td>0.059(8월)</td>
<td>0.148</td>
<td>0.200(2월)</td>
</tr>
<tr>
<td>2010</td>
<td>0.034</td>
<td>0.074(9월)</td>
<td>0.108</td>
<td>0.180(8월)</td>
</tr>
<tr>
<td>2011</td>
<td>0.045</td>
<td>0.101(8월)</td>
<td>0.102</td>
<td>0.167(7월)</td>
</tr>
<tr>
<td>2012</td>
<td>0.039</td>
<td>0.070(9월)</td>
<td>0.086</td>
<td>0.121(9월)</td>
</tr>
<tr>
<td>2013</td>
<td>0.037</td>
<td>0.080(7월)</td>
<td>0.064</td>
<td>0.126(9월)</td>
</tr>
<tr>
<td>2014</td>
<td>0.023</td>
<td>0.042(8월)</td>
<td>0.058</td>
<td>0.139(8월)</td>
</tr>
<tr>
<td>2015</td>
<td>0.022</td>
<td>0.036(8월)</td>
<td>0.043</td>
<td>0.064(7월)</td>
</tr>
</tbody>
</table>

‘05년 이후 최고치 | 0.055 | 0.116 | 0.148 | 0.207 | 0.023 | 0.058 | 0.019 | 0.045 |

T-P 변화 추이 그림

자료: 환경부, 2016, 물환경정책 통계자료
○ T-N 변화 추이

〈표 6〉 T-N 변화 추이(‘05∼’15)

<table>
<thead>
<tr>
<th>구 분</th>
<th>한강(팔당댐)</th>
<th>낙동강(물금)</th>
<th>금강(대청댐)</th>
<th>영산강(주암댐)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>연평균</td>
<td>월최고치</td>
<td>연평균</td>
<td>월최고치</td>
</tr>
<tr>
<td>2005</td>
<td>2.206</td>
<td>2.612(8월)</td>
<td>2.953</td>
<td>3.700(3월)</td>
</tr>
<tr>
<td>2006</td>
<td>2.190</td>
<td>2.570(2월)</td>
<td>3.122</td>
<td>4.427(2월)</td>
</tr>
<tr>
<td>2007</td>
<td>2.350</td>
<td>2.657(8월)</td>
<td>2.996</td>
<td>3.922(12월)</td>
</tr>
<tr>
<td>2008</td>
<td>1.938</td>
<td>2.374(1월)</td>
<td>2.763</td>
<td>4.001(1월)</td>
</tr>
<tr>
<td>2009</td>
<td>1.775</td>
<td>2.029(2월)</td>
<td>2.969</td>
<td>4.352(2월)</td>
</tr>
<tr>
<td>2010</td>
<td>2.076</td>
<td>2.413(12월)</td>
<td>2.891</td>
<td>4.582(2월)</td>
</tr>
<tr>
<td>2011</td>
<td>2.292</td>
<td>3.092(5월)</td>
<td>2.960</td>
<td>3.969(3월)</td>
</tr>
<tr>
<td>2012</td>
<td>2.267</td>
<td>2.734(7월)</td>
<td>2.914</td>
<td>3.733(3월)</td>
</tr>
<tr>
<td>2013</td>
<td>2.200</td>
<td>2.484(2월)</td>
<td>2.780</td>
<td>3.592(2월)</td>
</tr>
<tr>
<td>2014</td>
<td>2.004</td>
<td>2.306(2월)</td>
<td>2.964</td>
<td>4.189(4월)</td>
</tr>
<tr>
<td>2015</td>
<td>1.982</td>
<td>2.597(2월)</td>
<td>2.425</td>
<td>3.747(3월)</td>
</tr>
</tbody>
</table>

'05년 이후 최고치: 2.350 3.092 3.122 4.582 1.795 2.097 0.727 0.948

자료: 환경부, 2016, 물환경정책 통계자료
Chl-a 변화 추이

<표 7> Chl-a 변화 추이('05∼'15)

<table>
<thead>
<tr>
<th>구분</th>
<th>한강(팔당댐)</th>
<th>낙동강(물금)</th>
<th>금강(대청댐)</th>
<th>영산강(주암댐)</th>
</tr>
</thead>
<tbody>
<tr>
<td>연평균</td>
<td>월최고치</td>
<td>연평균</td>
<td>월최고치</td>
<td>연평균</td>
</tr>
<tr>
<td>2005</td>
<td>17.9</td>
<td>36.6(4월)</td>
<td>61.2</td>
<td>129.9(3월)</td>
</tr>
<tr>
<td>2006</td>
<td>18.1</td>
<td>30.7(5월)</td>
<td>62.4</td>
<td>148.5(3월)</td>
</tr>
<tr>
<td>2007</td>
<td>16.2</td>
<td>32.9(3월)</td>
<td>61.3</td>
<td>141.5(2월)</td>
</tr>
<tr>
<td>2008</td>
<td>16.2</td>
<td>30.1(1월)</td>
<td>47.2</td>
<td>151.1(2월)</td>
</tr>
<tr>
<td>2009</td>
<td>17.6</td>
<td>35.3(3월)</td>
<td>55.0</td>
<td>167.3(1월)</td>
</tr>
<tr>
<td>2010</td>
<td>14.7</td>
<td>24.3(7월)</td>
<td>46.2</td>
<td>167.2(2월)</td>
</tr>
<tr>
<td>2011</td>
<td>13.8</td>
<td>24.2(3월)</td>
<td>27.4</td>
<td>63.8(2월)</td>
</tr>
<tr>
<td>2012</td>
<td>12.5</td>
<td>22.8(3월)</td>
<td>41.5</td>
<td>138.7(2월)</td>
</tr>
<tr>
<td>2013</td>
<td>12.9</td>
<td>23.5(10월)</td>
<td>29.6</td>
<td>63.3(9월)</td>
</tr>
<tr>
<td>2014</td>
<td>10.3</td>
<td>19.2(8월)</td>
<td>27.9</td>
<td>40.5(3월)</td>
</tr>
<tr>
<td>2015</td>
<td>10.6</td>
<td>26.9(8월)</td>
<td>21.2</td>
<td>35.9(10월)</td>
</tr>
</tbody>
</table>

05년 이후 최고치: 18.1 36.6 62.4 167.3 8.7 34.2 4.3 10.5

자료: 환경부, 2016, 물환경정책 통계자료

Chl-a 변화 추이

자료: 환경부, 2016, 물환경정책 통계자료
목표기준 달성도

'좋은 물' 달성 현황

- (하천13) 전국 114개 중 권역14의 좋은 물 비율은 '15년 BOD 기준으로 83.3%(95개소)로서 '15년 목표인 85%(97개소) 근접

- '15년 기준으로 한강, 낙동강, 금강은 '15년 목표를 달성하였으며, 낙동강은 목표를 약 6%p 초과 달성하고 있으나 영산강·섬진강은 목표에 미흡

〈표 8〉 하천의 '좋은 물' 달성 현황('06∼'15)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>114</td>
<td>97 (85.10%)</td>
<td>85 (74.60%)</td>
<td>95 (82.10%)</td>
<td>97 (85.10%)</td>
<td>98 (86.00%)</td>
<td>97 (85.10%)</td>
<td>92 (81.10%)</td>
<td>93 (80.20%)</td>
<td>94 (81.90%)</td>
<td>95 (83.00%)</td>
<td></td>
</tr>
<tr>
<td>한강</td>
<td>28</td>
<td>23 (82.10%)</td>
<td>22 (78.60%)</td>
<td>20 (71.40%)</td>
<td>22 (78.60%)</td>
<td>24 (85.70%)</td>
<td>25 (89.30%)</td>
<td>23 (82.10%)</td>
<td>23 (82.10%)</td>
<td>24 (85.70%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>낙동강</td>
<td>33</td>
<td>29 (87.90%)</td>
<td>23 (69.70%)</td>
<td>30 (90.90%)</td>
<td>29 (87.90%)</td>
<td>33 (100.00%)</td>
<td>29 (87.90%)</td>
<td>31 (93.90%)</td>
<td>31 (93.90%)</td>
<td>31 (93.90%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>금강</td>
<td>22</td>
<td>16 (72.70%)</td>
<td>13 (69.10%)</td>
<td>11 (50.00%)</td>
<td>11 (50.00%)</td>
<td>15 (68.20%)</td>
<td>15 (68.20%)</td>
<td>15 (68.20%)</td>
<td>14 (63.60%)</td>
<td>16 (72.70%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>영산강·섬진강</td>
<td>31</td>
<td>29 (93.50%)</td>
<td>27 (87.10%)</td>
<td>24 (74.00%)</td>
<td>25 (80.60%)</td>
<td>23 (74.20%)</td>
<td>25 (77.40%)</td>
<td>27 (87.10%)</td>
<td>26 (80.20%)</td>
<td>23 (77.40%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

자료 : 환경부, 2015, 환경백서 2015

13) 하천의 좋은 물 달성 기준 : BOD 3mg/L 이하
14) '15년 기준 117개 중 권역 중 북한지역 2개 지점 및 건천화된 하천 1개 지점을 제외한 114개 중 권역을 대상으로 평가
- (호소\(^{15}\)) 전국 49개 주요 호소의 좋은 물 비율은 ’15년 기준으로 65.3%(32개소) 수준
 - 제1차 물환경관리 기본계획 ’15년 목표인 94%(46개소) 달성을 위한 추가 호소관리대책 필요

<표 9> 호소의 ‘좋은 물’ 달성 현황(’06~’15)

(단위 : 호소수)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>49</td>
<td>46(93.90%)</td>
<td>37(75.50%)</td>
<td>37(75.50%)</td>
<td>31(63.30%)</td>
<td>30(61.20%)</td>
<td>30(61.20%)</td>
<td>32(65.30%)</td>
<td>33(67.30%)</td>
<td>38(77.60%)</td>
<td>35(71.40%)</td>
<td>32(65.30%)</td>
</tr>
<tr>
<td>한강</td>
<td>13</td>
<td>12(92.30%)</td>
<td>11(84.60%)</td>
<td>11(84.60%)</td>
<td>10(76.90%)</td>
<td>10(76.90%)</td>
<td>10(76.90%)</td>
<td>11(84.60%)</td>
<td>10(84.60%)</td>
<td>11(84.60%)</td>
<td>10(76.90%)</td>
<td></td>
</tr>
<tr>
<td>낙동강</td>
<td>14</td>
<td>14(100.00%)</td>
<td>10(71.40%)</td>
<td>10(71.40%)</td>
<td>8(57.10%)</td>
<td>8(57.10%)</td>
<td>8(57.10%)</td>
<td>9(64.30%)</td>
<td>9(64.30%)</td>
<td>8(57.10%)</td>
<td>8(57.10%)</td>
<td></td>
</tr>
<tr>
<td>금강</td>
<td>10</td>
<td>8(80.00%)</td>
<td>5(50.00%)</td>
<td>5(50.00%)</td>
<td>5(50.00%)</td>
<td>5(50.00%)</td>
<td>4(50.00%)</td>
<td>5(50.00%)</td>
<td>5(50.00%)</td>
<td>7(70.00%)</td>
<td>6(60.00%)</td>
<td>6(60.00%)</td>
</tr>
<tr>
<td>영산강·섬진강</td>
<td>12</td>
<td>12(100.00%)</td>
<td>11(91.70%)</td>
<td>11(91.70%)</td>
<td>8(66.70%)</td>
<td>7(70.00%)</td>
<td>8(66.70%)</td>
<td>9(75.00%)</td>
<td>11(91.70%)</td>
<td>10(83.30%)</td>
<td>10(83.30%)</td>
<td>8(66.70%)</td>
</tr>
</tbody>
</table>

자료 : 환경부, 2015, 환경백서 2015

\(^{15}\) 호소의 좋은 물 달성 기준 : COD 4mg/L 이하
목표기준 달성 현황

- (하천) 전국 114개 중권역별 목표기준(BOD기준) 달성률은 ’15년 기준으로 75.4%(86개소)

〈표 10〉 하천의 목표기준 달성현황(’06~’15)

(단위 : 권역수)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>114</td>
<td>75</td>
<td>82</td>
<td>75</td>
<td>76</td>
<td>92</td>
<td>88</td>
<td>91</td>
<td>92</td>
<td>80</td>
</tr>
<tr>
<td>(BOD80)</td>
<td>(65.80%)</td>
<td>(71.90%)</td>
<td>(65.80%)</td>
<td>(66.70%)</td>
<td>(80.70%)</td>
<td>(77.20%)</td>
<td>(79.80%)</td>
<td>(80.70%)</td>
<td>(70.20%)</td>
<td>(75.40%)</td>
</tr>
<tr>
<td>한강</td>
<td>28</td>
<td>17</td>
<td>23</td>
<td>18</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>(BOD80)</td>
<td>(60.70%)</td>
<td>(82.10%)</td>
<td>(64.30%)</td>
<td>(71.40%)</td>
<td>(89.30%)</td>
<td>(89.30%)</td>
<td>(85.70%)</td>
<td>(89.30%)</td>
<td>(64.30%)</td>
<td>(64.30%)</td>
</tr>
<tr>
<td>낙동강</td>
<td>33</td>
<td>18</td>
<td>26</td>
<td>26</td>
<td>24</td>
<td>28</td>
<td>28</td>
<td>25</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td>(BOD80)</td>
<td>(54.50%)</td>
<td>(78.80%)</td>
<td>(78.80%)</td>
<td>(72.70%)</td>
<td>(84.80%)</td>
<td>(84.80%)</td>
<td>(75.80%)</td>
<td>(72.70%)</td>
<td>(69.70%)</td>
<td>(75.80%)</td>
</tr>
<tr>
<td>금강</td>
<td>22</td>
<td>16</td>
<td>13</td>
<td>13</td>
<td>16</td>
<td>18</td>
<td>16</td>
<td>19</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>(BOD80)</td>
<td>(72.70%)</td>
<td>(59.10%)</td>
<td>(59.10%)</td>
<td>(72.70%)</td>
<td>(61.80%)</td>
<td>(72.70%)</td>
<td>(72.70%)</td>
<td>(86.40%)</td>
<td>(81.80%)</td>
<td>(72.70%)</td>
</tr>
<tr>
<td>영산강·섬진강</td>
<td>31</td>
<td>24</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>21</td>
<td>19</td>
<td>23</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>(BOD80)</td>
<td>(77.40%)</td>
<td>(64.50%)</td>
<td>(58.10%)</td>
<td>(51.60%)</td>
<td>(67.70%)</td>
<td>(61.30%)</td>
<td>(74.20%)</td>
<td>(80.60%)</td>
<td>(74.20%)</td>
<td>(74.20%)</td>
</tr>
</tbody>
</table>

참고 : ’06년까지는 수역별 목표설정구간이 194개, ’07년부터는 114개로 조정
자료 : 국립환경과학원, 2015년 전국수질평가 보고서
환경부, 2014, 환경백서 2014
환경부, 2015, 환경백서 2015
- (호소) 전국 49개 주요 호소별 목표기준(COD기준) 달성률은 ’15년 기준으로 8.2%(4개소)

대표 11) 호소의 목표기준 달성현황(’06~’15)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>49</td>
<td>11</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>한강</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>낙동강</td>
<td>14</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>금강</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>영산강·섬진강</td>
<td>12</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

자료: 국립환경과학원, 2015년 전국수질평가 보고서
환경부, 2014, 환경백서 2014
환경부, 2015, 환경백서 2015
대권역별 수질 추이16)

- 한강대권역
 - 팔당댐의 총인, 총질소, Chl-a는 전반적으로 감소하였고 BOD는 정체 경향을 보이고 있으며, COD는 증가추세이다 ’12년부터 감소추세를 보임
 - 한강 대권역의 하천의 경우 ’15년 기준 28개 중권역(하천) 중 24개 중권역이 ‘좋은물’로 평가(85.7%)되어 제1차 물환경관리 기본계획의 목표를 달성하였으며, 목표기준 달성률의 경우 28개 중권역 중 18개 중권역이 개별 목표기준을 충족
 - 호소의 경우 ’15년 기준 13개 호소 중 10개의 호소가 ‘좋은물’로 평가(76.9%)되어 ’15년 목표 대비 81.8%의 목표달성 진척도를 나타내었으나, 목표기준 달성률은 0%로 한강전역 호소의 개별호소의 목표기준(COD 기준) 달성률이 매우 저조한 것으로 나타남

<table>
<thead>
<tr>
<th>구분</th>
<th>연평균 BOD(mg/L)</th>
<th>연평균 COD(mg/L)</th>
<th>연평균 T-N(mg/L)</th>
<th>연평균 T-P(mg/L)</th>
<th>연평균 Chl-a(㎎/㎥)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>월 최고치(9)</td>
<td>월 최고치(9)</td>
<td>월 최고치(9)</td>
<td>월 최고치(9)</td>
<td>월 최고치(9)</td>
</tr>
<tr>
<td>2006</td>
<td>1.2</td>
<td>3.3</td>
<td>2.190</td>
<td>0.055</td>
<td>18.1</td>
</tr>
<tr>
<td>2007</td>
<td>1.2</td>
<td>3.6</td>
<td>2.350</td>
<td>0.051</td>
<td>16.2</td>
</tr>
<tr>
<td>2008</td>
<td>1.3</td>
<td>3.8</td>
<td>1.938</td>
<td>0.042</td>
<td>16.2</td>
</tr>
<tr>
<td>2009</td>
<td>1.3</td>
<td>4.0</td>
<td>1.775</td>
<td>0.034</td>
<td>17.6</td>
</tr>
<tr>
<td>2010</td>
<td>1.2</td>
<td>3.9</td>
<td>2.076</td>
<td>0.034</td>
<td>14.7</td>
</tr>
<tr>
<td>2011</td>
<td>1.1</td>
<td>3.8</td>
<td>2.292</td>
<td>0.045</td>
<td>13.8</td>
</tr>
<tr>
<td>2012</td>
<td>1.1</td>
<td>3.9</td>
<td>2.267</td>
<td>0.039</td>
<td>12.5</td>
</tr>
<tr>
<td>2013</td>
<td>1.1</td>
<td>3.7</td>
<td>2.200</td>
<td>0.037</td>
<td>12.9</td>
</tr>
<tr>
<td>2014</td>
<td>1.2</td>
<td>3.5</td>
<td>2.004</td>
<td>0.023</td>
<td>10.3</td>
</tr>
<tr>
<td>2015</td>
<td>1.3</td>
<td>3.5</td>
<td>1.982</td>
<td>0.022</td>
<td>10.6</td>
</tr>
</tbody>
</table>

참고: 1) BOD는 봄철 저수기인 3~5월에 높음
 2) 총인은 비점오염원의 영향이 큰 7~9월에 높음
 3) 월 최고치는 연중 월평균값의 최고값임
자료: 국립환경과학원, 2015년 전국수질평가 보고서

16) 국립환경과학원, 2014, 2013년 전국수질평가 보고서
- 낙동강 대권역
 - 물금의 BOD, 총인, Chl-a는 감소추세이나 COD는 증가추세
 - 낙동강 대권역의 하천의 경우 ’15년 기준 33개 중권역 중 31개 중권역이 ’좋은물’로 평가(93.9%)되어 목표를 초과달성 하였으며, 목표기준 달성률의 경우 25개 중권역이 개별 목표기준(75.8%)을 충족
 - 호소의 경우 ’15년 기준 14개 호소 중 8개의 호소가 ’좋은물’로 평가 (57.1%)되어 ’15년 목표 대비 60.7%의 목표달성 진척도를 나타내었으며, 목표기준 달성률은 7.1%로 개별호소의 목표기준(COD 기준) 달성률이 저조한 것으로 나타남
 - 호소의 경우 14개소 중 밀양호 1개호소만 목표기준을 달성

<table>
<thead>
<tr>
<th>구분</th>
<th>연평균</th>
<th>월 최고치</th>
<th>연평균</th>
<th>월 최고치</th>
<th>연평균</th>
<th>월 최고치</th>
<th>연평균</th>
<th>월 최고치</th>
</tr>
</thead>
<tbody>
<tr>
<td>연평균</td>
<td>월 최고치</td>
<td>연평균</td>
<td>월 최고치</td>
<td>연평균</td>
<td>월 최고치</td>
<td>연평균</td>
<td>월 최고치</td>
<td></td>
</tr>
<tr>
<td>BOD(mg/L)</td>
<td>COD(mg/L)</td>
<td>T-N(mg/L)</td>
<td>T-P(mg/L)</td>
<td>Chl-a(㎎/㎥)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>2.7</td>
<td>5.0(3월)</td>
<td>5.7</td>
<td>7.8(3월)</td>
<td>3.122</td>
<td>4.427(2월)</td>
<td>0.136</td>
<td>0.207(7월)</td>
</tr>
<tr>
<td>2007</td>
<td>2.6</td>
<td>4.6(3월)</td>
<td>6.0</td>
<td>8.4(3월)</td>
<td>2.996</td>
<td>3.922(12월)</td>
<td>0.139</td>
<td>0.175(8월)</td>
</tr>
<tr>
<td>2008</td>
<td>2.4</td>
<td>4.0(2월)</td>
<td>5.9</td>
<td>7.8(2월)</td>
<td>2.763</td>
<td>4.001(1월)</td>
<td>0.142</td>
<td>0.175(1월)</td>
</tr>
<tr>
<td>2009</td>
<td>2.8</td>
<td>5.1(2월)</td>
<td>7.1</td>
<td>10.1(2월)</td>
<td>2.969</td>
<td>4.352(2월)</td>
<td>0.148</td>
<td>0.200(2월)</td>
</tr>
<tr>
<td>2010</td>
<td>2.4</td>
<td>5.4(2월)</td>
<td>6.4</td>
<td>9.7(2월)</td>
<td>2.891</td>
<td>4.582(2월)</td>
<td>0.108</td>
<td>0.180(8월)</td>
</tr>
<tr>
<td>2011</td>
<td>1.5</td>
<td>2.2(12월)</td>
<td>5.7</td>
<td>8.0(7월)</td>
<td>2.960</td>
<td>3.969(3월)</td>
<td>0.102</td>
<td>0.167(7월)</td>
</tr>
<tr>
<td>2012</td>
<td>2.4</td>
<td>3.8(3월)</td>
<td>6.2</td>
<td>8.3(2월)</td>
<td>2.914</td>
<td>3.733(3월)</td>
<td>0.086</td>
<td>0.121(9월)</td>
</tr>
<tr>
<td>2013</td>
<td>2.3</td>
<td>3.2(9월)</td>
<td>6.0</td>
<td>9.1(9월)</td>
<td>2.780</td>
<td>3.592(2월)</td>
<td>0.064</td>
<td>0.126(9월)</td>
</tr>
<tr>
<td>2014</td>
<td>2.3</td>
<td>3.0(7월)</td>
<td>6.3</td>
<td>7.9(8월)</td>
<td>2.964</td>
<td>4.189(4월)</td>
<td>0.058</td>
<td>0.139(8월)</td>
</tr>
<tr>
<td>2015</td>
<td>2.2</td>
<td>3.1(8월)</td>
<td>6.4</td>
<td>7.6(8월)</td>
<td>2.425</td>
<td>3.747(3월)</td>
<td>0.043</td>
<td>0.064(7월)</td>
</tr>
</tbody>
</table>

참고 : 낙동강 하류(하구언)는 동절기에 결빙이 없고 유량이 적어 점오염원의 영향이 커지는 1∼3월에 조류가 많이 발생하고 수질악화를 초래하는 경향이 있음
자료 : 국립환경과학원, 2015년 전국수질평가 보고서
환경부, 2016, 물환경정책통계자료
- 금강 대권역

 • 대청댐의 Chl-a, COD는 증가추세이며 BOD는 정체, 총질소, 총인은 감소추세를 보임

 • 금강 대권역의 하천의 경우 '15년 기준 22개 중권역 중 16개 중권역이 ‘좋은물’로 평가(72.7%)되어 제1차 계획의 목표를 달성하였으며, 목표기준 달성률의 경우 20개 중권역이 개별 목표기준(90.9%)을 충족

 • 호소의 경우 '15년 기준 10개 호소 중 6개의 호소가 ‘좋은물’로 평가(60%)되어 ’15년 목표 대비 63.8%의 목표달성 점수를 나타내었으며, 목표기준 달성률은 1개소 만이 목표기준(COD 기준)을 달성한 것으로 나타남

〈표 14〉 금강 대권역 대표지점(대청댐) 수질 추이

<table>
<thead>
<tr>
<th>구분</th>
<th>BOD(mg/L)</th>
<th>COD(mg/L)</th>
<th>T-N(mg/L)</th>
<th>T-P(mg/L)</th>
<th>Chl-a(㎎/㎥)</th>
</tr>
</thead>
<tbody>
<tr>
<td>연평균</td>
<td>월최고치</td>
<td>연평균</td>
<td>월최고치</td>
<td>연평균</td>
<td>월최고치</td>
</tr>
<tr>
<td>2006</td>
<td>1.1</td>
<td>1.4(8월)</td>
<td>3.3</td>
<td>3.9(9,10월)</td>
<td>1.662</td>
</tr>
<tr>
<td>2007</td>
<td>1.0</td>
<td>1.3(9월)</td>
<td>3.1</td>
<td>3.8(9,10월)</td>
<td>1.576</td>
</tr>
<tr>
<td>2008</td>
<td>1.0</td>
<td>1.2(7,8,9월)</td>
<td>3.5</td>
<td>4.2(9월)</td>
<td>1.626</td>
</tr>
<tr>
<td>2009</td>
<td>1.0</td>
<td>1.3(7월)</td>
<td>3.8</td>
<td>4.7(10월)</td>
<td>1.657</td>
</tr>
<tr>
<td>2010</td>
<td>1.0</td>
<td>1.4(7월)</td>
<td>3.8</td>
<td>5.4(9월)</td>
<td>1.664</td>
</tr>
<tr>
<td>2011</td>
<td>1.0</td>
<td>1.4(8월)</td>
<td>3.9</td>
<td>4.8(7월)</td>
<td>1.605</td>
</tr>
<tr>
<td>2012</td>
<td>1.0</td>
<td>1.2(8,9,10월)</td>
<td>4.7</td>
<td>6.7(9월)</td>
<td>1.595</td>
</tr>
<tr>
<td>2013</td>
<td>1.0</td>
<td>1.2(6,7,8월)</td>
<td>4.1</td>
<td>5.0(10월)</td>
<td>1.431</td>
</tr>
<tr>
<td>2014</td>
<td>1.0</td>
<td>1.7(7월)</td>
<td>4.0</td>
<td>4.8(9,10월)</td>
<td>1.305</td>
</tr>
<tr>
<td>2015</td>
<td>1.0</td>
<td>1.4(7월)</td>
<td>3.8</td>
<td>4.5(10월)</td>
<td>1.136</td>
</tr>
</tbody>
</table>

자료 : 국립환경과학원, 2015년 전국수질평가 보고서
환경부, 2016, 물환경정책통계자료
제 2차 물환경관리 기본계획 부록

제 1부 평가 및 전망

영산강·섬진강 대권역

- 주요문의 수질은 정체경향을 보임
 - 영산강·섬진강 대권역의 하천의 경우 ‘15년 기준 31개 중권역 중 24개 중권역이 ‘좋은물’로 평가(77.4%)되어 제1차 계획의 목표의 91.1%를 달성하였으며, 목표기준 달성률의 경우 23개 중권역이 개별 목표기준 (74.2%)을 만족
 - 호소의 경우 ‘15년 기준 12개 호소 중 8개의 호소가 ‘좋은물’로 평가(66.7%)되어 ‘15년 목표 대비 71.0%의 목표달성 진척도를 나타내었으며, 목표기준 달성률은 2개소 만이 목표기준(COD 기준)을 달성한 것으로 나타남

<table>
<thead>
<tr>
<th>구분</th>
<th>연평균</th>
<th>월 최고치</th>
<th>연평균</th>
<th>월 최고치</th>
<th>연평균</th>
<th>월 최고치</th>
<th>연평균</th>
<th>월 최고치</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD(mg/L)</td>
<td>1.1</td>
<td>1.5(2월)</td>
<td>2.7</td>
<td>3.1(5월)</td>
<td>0.864</td>
<td>1.088(7월)</td>
<td>0.011</td>
<td>0.018(10월)</td>
</tr>
<tr>
<td>COD(mg/L)</td>
<td>0.8</td>
<td>1.0(1,5,12월)</td>
<td>2.7</td>
<td>3.2(10월)</td>
<td>0.937</td>
<td>1.907(12월)</td>
<td>0.012</td>
<td>0.025(10월)</td>
</tr>
<tr>
<td>T-N(mg/L)</td>
<td>0.6</td>
<td>0.8(4월)</td>
<td>2.6</td>
<td>3.4(12월)</td>
<td>1.124</td>
<td>1.718(12월)</td>
<td>0.008</td>
<td>0.010(2,12월)</td>
</tr>
<tr>
<td>T-P(mg/L)</td>
<td>0.8</td>
<td>1.1(8,9월)</td>
<td>3.0</td>
<td>3.7(9월)</td>
<td>0.727</td>
<td>0.948(8월)</td>
<td>0.019</td>
<td>0.045(7월)</td>
</tr>
<tr>
<td>Chl-a(㎎/㎥)</td>
<td>2006</td>
<td>2.3</td>
<td>3.6(9월)</td>
<td>2007</td>
<td>2.8</td>
<td>4.2(9월)</td>
<td>2008</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>3.1</td>
<td>8.9(9월)</td>
<td>2010</td>
<td>2.7</td>
<td>6.3(9월)</td>
<td>2011</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>2.7</td>
<td>10.5(10월)</td>
<td>2013</td>
<td>2.5</td>
<td>4.6(6월)</td>
<td>2014</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>3.9</td>
<td>8.0(3월)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

자료: 국립환경과학원, 2015년 전국수질평가 보고서, 환경부, 2015, 물환경정책통계자료
수생태계 건강성 평가\(^{17}\)

전국 수생태계 건강성 변화

- 부착돌말류(42.8→46.2), 저서성대형무척추동물(68.5→69.7), 어류(55.4→57.3) 등 모든 평가항목에서 개선
 ※ 부착돌말류는 부착돌말지수(TDI), 저서성 대형무척추동물은 저서동물지수(BMI), 어류는 어류생물지수(FAI), 서식 및 수변환경은 서식 및 수변환경지수(HRI)를 사용함
- 서식·수변환경 지수에 따른 하천환경은 ‘양호’수준을 유지하고 있으나 악화(‘08년 62.0 → ’15년 53.4)
 - 서식·수변환경 부문은 ’12년에 평가기법이 변경되어 기법 변경 전후의 변화를 단순 비교하는 것은 무리가 있음
 - 본류에서 하략폭이 크며, 4대강 사업에 따른 제방정비 및 공원화 등 하천변 폭 손실 및 하도 자연성 훼손의 영향

〈표 16〉수생태계 건강성 변화 추이(‘08~’15)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>부착돌말미(TDI)</td>
<td>42.8</td>
<td>43.5</td>
<td>44.5</td>
<td>43.1</td>
<td>43.4</td>
<td>43.5</td>
<td>43.4</td>
<td>46.2</td>
</tr>
<tr>
<td>저서성 대형무척추동물(BMI)</td>
<td>68.5</td>
<td>69.0</td>
<td>69.4</td>
<td>66.7</td>
<td>71.0</td>
<td>70.8</td>
<td>69.3</td>
<td>69.7</td>
</tr>
<tr>
<td>어류(FAI)</td>
<td>55.4</td>
<td>55.6</td>
<td>54.1</td>
<td>56.3</td>
<td>58.2</td>
<td>59.0</td>
<td>58.7</td>
<td>57.3</td>
</tr>
<tr>
<td>서식 및 수변환경(RAI)</td>
<td>62.0</td>
<td>62.9</td>
<td>61.7</td>
<td>60.0</td>
<td>52.1</td>
<td>52.1</td>
<td>53.8</td>
<td>53.4</td>
</tr>
</tbody>
</table>

자료: 국립환경과학원, 2013, 수생태계 건강성 조사 및 평가(VI)
국립환경과학원, 2014, 하천 수생태계 현황 조사 및 건강성 평가(VII)
국립환경과학원, 2015, 하천 수생태계 현황 조사 및 건강성 평가(VIII)

17) 수체에서 다양한 생명들이 최적의 삶을 영위할 수 있는 상태 또는 서식하고 있는 동식물의 건강성 등을 종합적으로 파악하기 위하여 4대강과 전국 주요하천을 대상으로 2007년부터 수생태계 건강성 조사·평가를 시행함. 수생태계 건강성 조사·평가를 위한 모니터링분야는 부착돌말무척추동물, 저서성대형무척추동물, 어류 등 3개 생물군과, 서식 및 수변환경 등 총 4개 분야로서 생물종의 다양성, 풍부도 및 서식환경의 건강성 수준을 지수로 계량화하여 4등급(최상, 양호, 보통, 불량)으로 수생태계의 건강성을 평가하고 있음. 또한 3개 생물군 지수를 평균하여 생물통합평가 지수로 이용하고 있음.
대권역별 수생태계 건강성 변화 추이

- 한강 대권역
 - 수생생물 중 부착돌말류와 어류는 '10∼'11년 동안 약간 악화되었다가 회복세를 나타냄
 - 하천환경은 ‘양호’수준이나 ‘09년 이후 악화

<표 17> 한강 대권역 수생태 건강성 변화 추이 및 현황(08∼15)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>부착돌말류(TDI)</td>
<td>46.5</td>
<td>46.5</td>
<td>45.6</td>
<td>41.5</td>
<td>44.4</td>
<td>44.3</td>
<td>45.8</td>
<td>50.2</td>
</tr>
<tr>
<td>저서성 대형무척추동물(BMI)</td>
<td>71.6</td>
<td>72.4</td>
<td>71.3</td>
<td>69.3</td>
<td>74.3</td>
<td>74.6</td>
<td>71.8</td>
<td>72.4</td>
</tr>
<tr>
<td>어류(FAI)</td>
<td>60.1</td>
<td>61.1</td>
<td>57.6</td>
<td>59.5</td>
<td>64.9</td>
<td>67.0</td>
<td>66.9</td>
<td>63.1</td>
</tr>
<tr>
<td>서식 및 수변환경(RAI)</td>
<td>61.6</td>
<td>64.2</td>
<td>64.1</td>
<td>61.4</td>
<td>54.4</td>
<td>54.2</td>
<td>56.4</td>
<td>56.2</td>
</tr>
</tbody>
</table>

자료: 국립환경과학원, 2013, 수생태계 건강성 조사 및 평가(VI)
국립환경과학원, 2014, 하천 수생태계 현황 조사 및 건강성 평가(VII)
국립환경과학원, 2015, 하천 수생태계 현황 조사 및 건강성 평가(VIII)
- 낙동강 대권역
 - 하천환경은 ‘양호’수준이나 ’09년 이후 악화

 표 18 낙동강 대권역 수생태 건강성 변화 추이 및 현황(’08~’15)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>부착돌말류(TDI)</td>
<td>39.8</td>
<td>44.6</td>
<td>42.7</td>
<td>41.6</td>
<td>43.1</td>
<td>45.9</td>
<td>45.4</td>
<td>47.9</td>
</tr>
<tr>
<td>저서성 대형무척추동물(BMI)</td>
<td>69.1</td>
<td>69.6</td>
<td>68.6</td>
<td>62.3</td>
<td>73.1</td>
<td>69.5</td>
<td>70.4</td>
<td>69.5</td>
</tr>
<tr>
<td>어류(FAI)</td>
<td>47.5</td>
<td>49.7</td>
<td>51.0</td>
<td>56.9</td>
<td>55.8</td>
<td>55.6</td>
<td>55.0</td>
<td>56.5</td>
</tr>
<tr>
<td>서식 및 수변환경(RAI)</td>
<td>62.0</td>
<td>63.4</td>
<td>61.4</td>
<td>58.4</td>
<td>51.6</td>
<td>51.2</td>
<td>54.4</td>
<td>53.2</td>
</tr>
</tbody>
</table>

자료: 국립환경과학원, 2013, 수생태계 건강성 조사 및 평가(VI)
 국립환경과학원, 2014, 하천 수생태계 현황 조사 및 건강성 평가(VII)
 국립환경과학원, 2015, 하천 수생태계 현황 조사 및 건강성 평가(VIII)

- 금강 대권역
 - 하천환경은 ‘양호’수준이나 ’08년 이후 악화

 표 19 금강 대권역 수생태 건강성 변화 추이 및 현황(’08~’15)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>부착돌말류(TDI)</td>
<td>34.9</td>
<td>33.5</td>
<td>41.6</td>
<td>44.3</td>
<td>40.4</td>
<td>37.2</td>
<td>35.2</td>
<td>36.8</td>
</tr>
<tr>
<td>저서성 대형무척추동물(BMI)</td>
<td>60.0</td>
<td>61.0</td>
<td>62.6</td>
<td>61.0</td>
<td>64.1</td>
<td>64.2</td>
<td>63.3</td>
<td>62.9</td>
</tr>
<tr>
<td>어류(FAI)</td>
<td>57.2</td>
<td>50.9</td>
<td>48.8</td>
<td>50.8</td>
<td>50.7</td>
<td>52.1</td>
<td>52.5</td>
<td>50.3</td>
</tr>
<tr>
<td>서식 및 수변환경(RAI)</td>
<td>63.6</td>
<td>60.7</td>
<td>58.6</td>
<td>60.5</td>
<td>49.5</td>
<td>50.3</td>
<td>50.1</td>
<td>47.9</td>
</tr>
</tbody>
</table>

자료: 국립환경과학원, 2013, 수생태계 건강성 조사 및 평가(VI)
 국립환경과학원, 2014, 하천 수생태계 현황 조사 및 건강성 평가(VII)
 국립환경과학원, 2015, 하천 수생태계 현황 조사 및 건강성 평가(VIII)
- 영산강·섬진강 대권역
 - 영산강 대권역의 하천환경은 ‘양호’ 수준이나 ‘11∼’12년 동안 악화되었다가 회복세를 나타냄

 표 20 영산강 대권역 수생태 건강성 변화 추이 및 현황(‘08∼’15)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>부착돌말류(TDI)</td>
<td>37.9</td>
<td>37.8</td>
<td>42.2</td>
<td>42.3</td>
<td>36.8</td>
<td>36.7</td>
<td>38.3</td>
<td>39.0</td>
</tr>
<tr>
<td>저서성 대형무척추동물(BMI)</td>
<td>61.5</td>
<td>57.4</td>
<td>66.7</td>
<td>65.2</td>
<td>60.3</td>
<td>62.9</td>
<td>61.6</td>
<td>64.0</td>
</tr>
<tr>
<td>어류(FAI)</td>
<td>33.0</td>
<td>40.9</td>
<td>45.9</td>
<td>44.6</td>
<td>46.7</td>
<td>44.2</td>
<td>44.6</td>
<td>45.1</td>
</tr>
<tr>
<td>서식 및 수변환경(RAI)</td>
<td>56.6</td>
<td>56.7</td>
<td>57.1</td>
<td>54.3</td>
<td>47.3</td>
<td>48.1</td>
<td>48.0</td>
<td>51.3</td>
</tr>
</tbody>
</table>

자료: 국립환경과학원, 2013, 수생태계 건강성 조사 및 평가(VI)
국립환경과학원, 2014, 하천 수생태계 현황 조사 및 건강성 평가(VII)
국립환경과학원, 2015, 하천 수생태계 현황 조사 및 건강성 평가(VIII)

- 섬진강 대권역의 하천환경은 ‘양호’ 수준이나 ‘09∼’13년 동안 지속적으로 악화되었다가 회복세를 나타냄

 표 21 섬진강 대권역 수생태 건강성 변화 추이 및 현황(‘08∼’15)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>부착돌말류(TDI)</td>
<td>47.4</td>
<td>55.2</td>
<td>53.5</td>
<td>52.3</td>
<td>54.6</td>
<td>55.1</td>
<td>51.5</td>
<td>52.3</td>
</tr>
<tr>
<td>저서성 대형무척추동물(BMI)</td>
<td>72.2</td>
<td>77.2</td>
<td>79.0</td>
<td>79.2</td>
<td>76.7</td>
<td>80.3</td>
<td>75.8</td>
<td>77.9</td>
</tr>
<tr>
<td>어류(FAI)</td>
<td>57.9</td>
<td>65.3</td>
<td>64.1</td>
<td>63.9</td>
<td>64.2</td>
<td>65.3</td>
<td>63.1</td>
<td>62.7</td>
</tr>
<tr>
<td>서식 및 수변환경(RAI)</td>
<td>68.9</td>
<td>67.5</td>
<td>63.0</td>
<td>62.9</td>
<td>54.1</td>
<td>53.5</td>
<td>53.8</td>
<td>55.6</td>
</tr>
</tbody>
</table>

자료: 국립환경과학원, 2013, 수생태계 건강성 조사 및 평가(VI)
국립환경과학원, 2014, 하천 수생태계 현황 조사 및 건강성 평가(VII)
국립환경과학원, 2015, 하천 수생태계 현황 조사 및 건강성 평가(VIII)
3) 주요 정책 성과

- 수생태계 중심의 물환경관리 체계 확립

 - 수생태계 보전을 위한 제도적과학적 관리기반 마련
 - "수질환경보전법"을 "수질 및 수생태계 보전에 관한 법률"로 개정하여 물환경 관리의 범위를 수생태계까지 확대(’07.5)
 - 체계적이고 과학적인 수생태계 관리를 위하여 하천·하구 수생태계 건강성 조사 및 평가 실시

 - 하천 수생태계 조사지점 증가[’07(540개소)→’11(880개소)→’15(960개소)]

- 수생태계 건강성 복원 사업 강화

 - 생태하천 복원사업 확대 및 도심 훼손하천 복원 본격 추진
 - 계획 초기(’06) 대비 ’14년 기준 연간 투자규모는 3배(851 → 2,605억원), 연간 물량은 2.8배로 대폭 증가(57 → 162개소)
 - 도시화, 산업화로 인해 콘크리트로 복개되었거나 건천화된 도심 하천을 지역 주민들의 생태·문화 휴식공간으로 창출하기 위한 ‘도심하천 생태 복원 사업’ 추진(’09~)

- 생물, 서식처 등 생태계 중심의 하천복원 추진

 - 하천별 간재내 현황 조사, 우선 복원대상 선정(20개 하천, 28종) 등 수생생물 보전복원 특성화 사회 도입(’09.12)

 - 수생태복원사업단 운영(’07~’14) 등을 통해 생물종 복원, 서식처 조성 기법 등 수생태계복원 신기술 개발 및 사업화 추진

18) 하천은 2007년부터, 하구는 2008년부터 시작
19) 생태하천이란 하천이 지닌 본래의 자연성과 생태적 기능을 최대한 갖고있는 하천을 의미하며 생태하천 복원이란 하천 내외의 인공적인 생태계 교란요인을 제거하여 자연에 가깝게 복원하고 건강한 생태계가 유지될 수 있도록 관리해나가는 활동을 의미(환경부, 2015, 환경백서)
20) 대전 대천천(’08~’10, 완료), 전주 노송천(’08~’14, 공사중) 등 총 42개소 대상
- 생태하천 복원사업의 효과 제고를 위한 가이드라인 마련
 • 생태하천 복원사업 기술지침서, 조사·평가 및 점검 매뉴얼, 사후관리 매뉴얼 하천사업 환경영향평가 가이드라인, 수생태건강성 회복을 위한 하천복원 실라잡이 등 생태하천 복원의 추진방향 제시
- 생태하천 복원사업 우수사례 적극 발굴·홍보
 • 생태하천복원사업 추진사례 홍보책자 ‘천생인생’ 발간·배포(‘07, ’09, ’11, ’13), 수질개선 및 수생태 복원 우수사례 발굴·포상(‘12~25개소) 등
- 생태하천 복원사업의 합리성·효율성 확보
 • BOD 평균 개선율 50.4%(3.8→1.9mg/L, ’07~’13년 준공 20개 하천)로써 수질개선, 멸종위기종 등 생물다양성 증가, 지역주민 친숙공간 제공 등
- 생태하천 복원사업 추진을 위한 기반 강화
 • ‘수질 및 수생태계 보전에 관한 법률’에 수생태계 복원계획 수립·시행에 대한 법적 근거 마련(’15.12월)

[유역중심의 수질관리체계 강화]

- 수질오염총량관리제도 확대
 - 3대강수계 3단계(‘16~'20년) 수질오염총량제 기본계획 승인(‘15.3~9월)
 • 2단계 대비 3단계 목표수질(BOD 4.5~12%, T-P 10~46%)을 강화하고, 목표 연도(‘20년) 할당부하량 BOD 평균 97.4%, T-P 평균 89.0% 수준으로 선정
 - 금강수계 대전광역시(갑천 A 단위유역) 3단계 대상물질 T-P 도입
 • 3대강수계 1단계(‘04~’10년, 대상물질 BOD), 2단계(‘11~’15년, 대상물질 BOD, T-P) 완료
 - 임의제로 운영된 한강수계 오염총량제(팔당호 상류 7개 시·군)를 서울·인천·경기지역으로 확대하여 의무제 시행(‘13.6~’20.12)
 • 수질오염총량제 4대강 통합 시행과 원활한 운영을 위한 수질오염총량관리기술지침 개정(‘12.8, 최근개정 ’14.5)
- '수질 및 수생태계 보전에 관한 법률' 개정('07.5)을 통해 수질오염총량제 시행지역의 범위를 4대강 수계에서 기타 수계까지 확대
 - 기타 4대강 수계에 포함되지 않은 수계 중 수질오염이 심각한 신위천에 대하여 오염총량제 시행(‘12~)

○ 법무처적 비점오염원관리 방안 확대
- 비점오염원 설치신고제도 도입(‘06.4~)
 - 일정규모 이상 개발사업 및 폐수처리시설 설치 사업장에 비점오염 저감시설을 설치하고 도입하도록 의무화
- 관계부처 합동 「제2차 비점오염원관리 종합대책(‘12~’20)」 수립(‘12)
- 비점오염원 관리지역 지정 및 지원 강화
 - 도암호, 광주시, 수원시, 새만금유역, 골지천유역, 소양호 유역(만대, 자운, 가야지구) 8개소를 비점오염원 관리지역(21)으로 지정(‘07, ’10, ’13)하여 관리
 - 비점오염원 관리지역 및 도시·농촌 지역 비점오염저감사업 지원을 위해 국고보조사업을 실시(‘08~)
- 저영향개발(LID, Low Impact Development) 기법 확대 적용(‘13~)
 - LID 기술요소 가이드라인, 환경영향평가 시 LID 적용 제속면밀 등 마련
 - 비점오염원 설치신고자는 LID를 반영하도록 의무화
 - 행복도시 조성 시 LID 적용하기 위한 환경부-행복청 업무협약 체결
- 농촌지역 비점오염원 관리대책, 고령지 환경물 저감대책 수립(‘15)

○ 새만금유역 환경대책 추진
- 새만금호 목표수질 달성을 위한 새만금유역 제2단계 수질개선종합대책(‘11~’20) 수립(‘11.3)
 - 새만금 조류예보체 시범운영(‘12~’13) 및 조류 모니터링 지속 실시

21) 비점오염원으로 인해 중대한 위해가 발생하였거나, 발생할 우려가 있는 지역을 비점오염원 관리지역으로 지정하여 관리하고 있다. 임하호는 비점오염원관리지역 지정 해제(‘14.12), 소양호는 해제 후 중점지역 3개소를 재지정(‘15.10)
- 새만금 특별법 제정(‘11.7)을 통해 환경부를 환경부로 일원화하고, 관리 강화를 위한 지방환경청 확대 개편(‘12.7)
- 새만금 유역 제2단계 수질개선 종합대책 중간평가 및 추가대책 마련(‘15.12)

○ 통합집중형 오염하천 관리 체계 마련
- 오염하천의 단기간 내 개선을 위해 하수도, 생태하천복원 등 모든 수단을 집중하는 「통합·집중형 오염지류 개선지침」제정(‘12.3)

○ 상하류 상생(Win-Win)에 의한 유역관리 강화
- 지자체 공무원의 수계위 사무국 참여(한강), 물이용부담금 사용 내역 공개 확대 등 기금 운용의 지역참여 및 투명성 강화(‘12)

□ 환경기준 강화를 통한 위해성관리 강화

○ 하천 환경기준 개선과 관리대상 유해물질 확대
- 환경기준 등급을 세분화(5단계 → 7단계)하고 난분해성 물질의 관리를 위해 하천 환경기준에 COP, T-P, TOC 항목 추가(22)
- 유해물질 위해성 관리강화를 위해 벤젠 등 11개 유해물질을 사람의 건강 보호기준 항목에 추가(23)

○ 하폐수 위해성 관리 강화
- 산업단지 주변의 하천 등 공공수역 생태위해성 평가 실시(‘07~‘12)
- 유해물질과 생물독성 관리 강화를 위한 배출허용기준 등 신설
 - 염화비닐 등 관리대상 특정수질유해물질 확대(17종 → 28종(‘13))
 - 생태독성(TU) 배출허용기준 신설(‘07.12), 나플, 바륨 등 유해물질 배출 허용기준 추가(12종 → 24종(‘10))
- 부영양화 관리를 위한 공공하수처리시설 T-N, T-P 방류수수질기준 강화(‘12)

22) 등급 세분화 및 COD, T-P 추가(‘06.12 개정), TOC 추가(‘12,11 개정)
23) 벤젠, 사염화탄소, 디클로메탄 등 9개 항목(‘06,12개정), 1,4다이옥사이인, 포름알데히드, 헥사클로로벤젠 등 3개 항목 (‘12.11 개정)
24) ’07~‘12년까지 스크린 조사 174개 지점, 정밀조사 57개 지점 실시
가축분뇨 자원화 및 공공처리 확대 기반 마련

- 가축분뇨 자원화 등 특화된 관리를 위한 「가축분뇨의 관리 및 이용에 관한 법률」 제정(’06.9)
- 가축분뇨처리의 효율성을 위해 공공처리시설 처리대상을 소규모(신고 미만)에서 전체 축산농가로 확대(’11.7 개정)

물순환 구조개선 및 수요관리 강화

- 물 자원의 재이용 기반 확립
 - 「물의 재이용 촉진 및 지원에 관한 법률」을 제정(’10.6), 빗물, 하·폐수 처리수 등의 재이용 기반 마련
 - 물 재이용에 관한 국가 계획인 「물 재이용 기본계획」 수립(’11.9)
 - ’20년까지 25.4억톤/년 재이용 및 약 7조원(’12~’20) 투자 계획
 - 물 재이용 촉진을 위한 시행 기반 확립(’11.6)
 - 하·폐수처리수 재처리 설계시공업 신설(시행령)
 - 중수도 및 하·폐수처리수 재처리수의 용도별 수질기준 마련(시행규칙)
- 하수처리수 처리·보급 등 재이용 촉진
 - 민간투자 활성화를 위한 ‘하수처리수 재이용 민간투자 사업계획’ 수립(’09.1, ’10.2 조정)

물순환구조 회복을 위한 저영향개발기법(LID) 보급 추진

- 식생체류지, 투수성포장, 나무화분과상자 등 불투수면 최소화를 위한 저영향개발 시범사업 실시(충북 오창, 전북 전주)
- 「수질 및 수생태계 보전에 관한 법률 시행규칙」 개정을 통해 비점오염원 설치신고자에 비점오염저감계획서 및 비점오염저감시설 설치계획 등 제출시 저영향개발방안을 포함하도록 의무화(’14)

25) 기존 T-P 방류수 수질기준(2～4 mg/L) 대비 최고 10배 강화(0.2～4 mg/L)
26) 대구, 포항, 안산 등 23개소, 1,220천㎥/일(연간 4.4억톤)
노후수도관 개량, 물절약 등 물수요 관리 추진
- 「국가 물 수요관리 종합대책(’07∼’16)」 수립·추진을 통해 연간 274.8백만톤/년의 용수 절감(‘06 대비 ’11 실적 기준)
- 세탁기 등에 대한 물사용량 표시제 도입(‘11.7), 절수기기 기준 강화(‘12.7) 등을 통해 물절약을 위한 제도적 기반 강화

물환경관리의 과학화

물환경 정보 제공 시스템 확대
- 수질측정자료, 오염원 자료 등 물환경 정보의 활용성 강화를 위한 물환경 정보시스템27) 개선
 - 통계적 평가분석 시스템 도입(’09), 비점오염원 조사자료 관리 시스템 도입(’10), 기상·예보정보 실시간 연계(’11) 등
- 4대강 등 주요하천(60개 지점)의 실시간 수질 자동측정자료를 인터넷28)을 통해 대국민 실시간 공개 실시(’13.1)29)
- 배출시설과 정수장, 자동측정망을 연계한 통합모니터링 및 감시를 위한 수질오염방제정보시스템 구축(’10.3)

수저 퇴적물 모니터링 및 평가 체계 확립
- 퇴적물 모니터링 시범조사 및 배경농도 조사(’08∼’12)30)
- 수저 퇴적물 측정망 운영계획 수립 및 퇴적물 측정망 도입(’11.6)
- 「하천호수 퇴적물 오염평가 기준」 제정(’12.4)

수질예보제 도입
- 조류발생을 사전에 예측하여 선제적 수질관리에 활용할 수 있도록 물관리 기관을 대상으로 Chl-a, 유해 남조류에 대한 예보제 시행(’12.1∼)31)
남조류 대량 발생시 수질관리단체가 발령되지 않는 경우가 있어 이를 현실성있게 개선하기 위해 수질예보제 발령기준 개정(’13.6)

4) 투자 실적 평가

☐ 투자계획

☐ 제1차 물환경관리 기본계획은 10년 간(’06∼’15) 총 32조 7천억원 투자를 계획

<표 22> 제1차 물환경관리기본계획(’06∼’15) 투자계획

<table>
<thead>
<tr>
<th>구분</th>
<th>계</th>
<th>’06</th>
<th>’07</th>
<th>’08</th>
<th>’09</th>
<th>’10</th>
<th>’11</th>
<th>’12</th>
<th>’13</th>
<th>’14</th>
<th>’15</th>
</tr>
</thead>
<tbody>
<tr>
<td>합계</td>
<td>327,436</td>
<td>25,208</td>
<td>25,788</td>
<td>27,175</td>
<td>29,634</td>
<td>31,165</td>
<td>33,034</td>
<td>35,015</td>
<td>37,456</td>
<td>40,083</td>
<td>42,878</td>
</tr>
<tr>
<td>수생대복원</td>
<td>45,498</td>
<td>2,172</td>
<td>2,344</td>
<td>3,213</td>
<td>4,026</td>
<td>5,067</td>
<td>5,298</td>
<td>5,134</td>
<td>5,808</td>
<td>6,024</td>
<td>6,412</td>
</tr>
<tr>
<td>위해성관리</td>
<td>19,710</td>
<td>1,631</td>
<td>1,424</td>
<td>1,772</td>
<td>1,465</td>
<td>1,606</td>
<td>1,742</td>
<td>1,916</td>
<td>2,168</td>
<td>2,591</td>
<td>3,395</td>
</tr>
<tr>
<td>비점오염원</td>
<td>12,576</td>
<td>115</td>
<td>225</td>
<td>354</td>
<td>567</td>
<td>898</td>
<td>1,071</td>
<td>1,195</td>
<td>1,665</td>
<td>2,922</td>
<td>3,564</td>
</tr>
<tr>
<td>축산폐수처리장</td>
<td>4,142</td>
<td>269</td>
<td>211</td>
<td>281</td>
<td>422</td>
<td>405</td>
<td>431</td>
<td>474</td>
<td>505</td>
<td>529</td>
<td>615</td>
</tr>
<tr>
<td>하수도</td>
<td>245,510</td>
<td>21,021</td>
<td>21,584</td>
<td>21,555</td>
<td>23,154</td>
<td>23,189</td>
<td>24,492</td>
<td>26,296</td>
<td>27,310</td>
<td>28,017</td>
<td>28,892</td>
</tr>
</tbody>
</table>

자료: 환경부, 2016, 물환경정책 통계자료

☐ 투자현황

☐ ’06년부터 ’15년까지 약 33조 4천억원 투자

<표 23> 제1차 물환경관리기본계획(’06∼’15) 투자현황

<table>
<thead>
<tr>
<th>구분</th>
<th>계</th>
<th>’06</th>
<th>’07</th>
<th>’08</th>
<th>’09</th>
<th>’10</th>
<th>’11</th>
<th>’12</th>
<th>’13</th>
<th>’14</th>
<th>’15</th>
</tr>
</thead>
<tbody>
<tr>
<td>수생대복원</td>
<td>44,188</td>
<td>2,844</td>
<td>2,575</td>
<td>3,268</td>
<td>5,276</td>
<td>3,709</td>
<td>3,546</td>
<td>3,946</td>
<td>6,636</td>
<td>6,311</td>
<td>6,816</td>
</tr>
<tr>
<td>위해성관리</td>
<td>33,521</td>
<td>1,790</td>
<td>2,024</td>
<td>2,131</td>
<td>2,702</td>
<td>3,034</td>
<td>3,023</td>
<td>4,846</td>
<td>5,034</td>
<td>4,743</td>
<td>4,194</td>
</tr>
<tr>
<td>비점오염원</td>
<td>5,408</td>
<td>95</td>
<td>90</td>
<td>250</td>
<td>261</td>
<td>348</td>
<td>544</td>
<td>749</td>
<td>825</td>
<td>1,209</td>
<td>1,037</td>
</tr>
<tr>
<td>축산폐수처리장</td>
<td>8,563</td>
<td>239</td>
<td>195</td>
<td>453</td>
<td>943</td>
<td>1,023</td>
<td>949</td>
<td>1,231</td>
<td>1,330</td>
<td>1,294</td>
<td>906</td>
</tr>
<tr>
<td>하수도</td>
<td>242,405</td>
<td>18,816</td>
<td>18,771</td>
<td>20,047</td>
<td>26,649</td>
<td>24,594</td>
<td>24,651</td>
<td>25,048</td>
<td>25,645</td>
<td>27,953</td>
<td>30,231</td>
</tr>
</tbody>
</table>

자료: 환경부, 2016, 물환경정책 통계자료
□ 사업부문별 투자실적

○ 투자액의 대부분인 72.6%(24.2조원)가 하수도 부분에 투입되었음

〈표 24〉사업부문별 투자실적(’06∼’15)

<table>
<thead>
<tr>
<th>구분</th>
<th>계획(A)</th>
<th>실적(B)</th>
<th>계획대비 투자(B/A)</th>
<th>투자비중</th>
</tr>
</thead>
<tbody>
<tr>
<td>합 계</td>
<td>32조7,436억원</td>
<td>33조4,107억원</td>
<td>102.04%</td>
<td>100%</td>
</tr>
<tr>
<td>수생태복원</td>
<td>4조5,498억원</td>
<td>4조4,188억원</td>
<td>97.12%</td>
<td>13.2%</td>
</tr>
<tr>
<td>위생성관리</td>
<td>1조9,710억원</td>
<td>3조3,521억원</td>
<td>170.07%</td>
<td>10.0%</td>
</tr>
<tr>
<td>비정오염원</td>
<td>1조2,576억원</td>
<td>5,408억원</td>
<td>43.00%</td>
<td>1.6%</td>
</tr>
<tr>
<td>축산폐수처리장</td>
<td>4,142억원</td>
<td>8,563억원</td>
<td>206.74%</td>
<td>2.6%</td>
</tr>
<tr>
<td>하수도</td>
<td>24조5,510억원</td>
<td>24조2,405억원</td>
<td>98.74%</td>
<td>72.6%</td>
</tr>
</tbody>
</table>

자료 : 환경부(2015) 참고하여 재구성

(단위 : 억원)

〈그림 1〉사업부문별 투자실적(’06∼’15)
2. 물 환경관리 여건 변화와 전망

<table>
<thead>
<tr>
<th>구분</th>
<th>전망</th>
<th>시사점</th>
</tr>
</thead>
<tbody>
<tr>
<td>기후변화</td>
<td>• 2100년까지 한반도의 연평균 기온 4.0℃ 증가, 해수면 20.9cm 상승, 연평균강수량 17% 증가 예측</td>
<td>• 수질 수생태계 악화 및 환경위험 대비 필요</td>
</tr>
<tr>
<td></td>
<td>• 폭염, 게릴라성 호우, 가뭄의 빈도와 강도 증가 예상</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 수질 및 수생태계 악화 예상</td>
<td></td>
</tr>
<tr>
<td>4대강 하천환경</td>
<td>• 4대강 설리기 사업에 따른 16개보 설치로 수량과 체류시간 증가</td>
<td>• 수질 수생태계 영향 저감 및 대응체계 마련 필요</td>
</tr>
<tr>
<td></td>
<td>• 퇴적토 준설, 농경지 철거, 천수공간 등의 조성으로 인한 수저 및 수변 환경변화</td>
<td></td>
</tr>
<tr>
<td>사회·경제·기술</td>
<td>• 2025년 인구는 2015년 대비 2.7% 증가</td>
<td>• 환경오염 민감계층 증가에 따른 안전대응책 마련</td>
</tr>
<tr>
<td></td>
<td>• 2025년 고령인구는 2015년 대비 1.6배 증가</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1인이구 비율 증가에 의한 개인주의 강화</td>
<td>• 물환경관련 갈등 조정체계 필요</td>
</tr>
<tr>
<td></td>
<td>• 경제성장 둔화에 의한 생산인구 감소</td>
<td>• 양질의 물환경서비스 제공</td>
</tr>
<tr>
<td></td>
<td>• 신기술, 발전, ICT 기술 발전</td>
<td>• 물산업 등 신성장동력 개발 필요</td>
</tr>
<tr>
<td></td>
<td>• 빅데이터 시대 도래</td>
<td></td>
</tr>
<tr>
<td>물환경 여건</td>
<td>• 물의 경제적 가치 부각</td>
<td>• 물의 수요 및 오염원의 변화에 따른 대응책 마련</td>
</tr>
<tr>
<td></td>
<td>• 물을 즐기고자 하는 국민적 욕구 증대</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 농업용수의 수요 감소, 상대적으로 깨끗한 원수가 요구되는 생활용수 및 공업용수 수요 증가</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 점오염원 대비 비점오염원 발생 비중 증가</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 축산계, 토지계에 의한 수질오염 비중 증가</td>
<td></td>
</tr>
</tbody>
</table>

가. 기후변화에 따른 수질 및 수생태 변화

기후변화 현황 및 전망

지구온난화로 인해 전 지구의 평균기온은 지난 133년간 (1880~2022년) 0.85℃ (0.65~1.06℃) 상승하였으며 전지구 평균기온 증가 추세는 지속되고 있음

32) 기상청, 2015, 기후변화 2014-IPCC 제5차 평가 종합보고서
- 1901∼2010년 동안 전지구 평균 해수면은 19(17∼21)cm 상승(33)
 • 1901∼2010년의 전 지구 해수면 상승률은 1.7(1.5∼1.9)mm/yr 인데 반해
 1993∼2010년의 상승률은 3.2(2.8∼3.6)mm/yr 로 해수면 상승이 가속화
- 전 세계적으로 폭염, 홍수, 폭설 등의 발생이 빈번
 • ('10년) 남반구(호주, 브라질) 홍수, 파키스탄 홍수(8월), 러시아 폭염·가뭄(8월), 서유럽·북아메리카 폭설(12월) 등
 • ('11년) 미국 미시시피강 범람(4월), 중국 중남부 폭우(6월), 태국 홍수(10월) 등

(a) 전지구 평균 육지-해양 표면온도 편차
(b) 1901∼2012년 전지구 평균기온 변화

자료 : 기상청, 2015, 기후변화 2014-IPCC 제5차 평가 종합보고서

〈그림 2〉 전 지구 평균기온 변화

○ 현재 추세로 저감없이 온실가스를 배출한다면(RCP34)8.5 시나리오, 금세기 말
 (2081∼2100년)의 전 지구의 평균기온은 3.7℃, 해수면은 63cm 상승, 강수량
 4.1~8.1% 증가할 것으로 예상(35)

33) 기상청, 2015, 기후변화 2014-IPCC 제5차 평가 종합보고서
34) RCP 시나리오 : Representative Concentration Pathways
35) 기상청, 2015, 기후변화 2014-IPCC 제5차 평가 종합보고서
- 기후 손상에 의한 이상기후 빈번 발생으로 매해 막대한 인명과 재산 피해 발생
 - 2004~2013년까지 10년간 호우로 3조 7,347억원, 태풍 2조 498억원, 대설 1조 3,988억원 피해

자료: 관계부처합동, 2015, 이상기후 보고서 2014

「그림 3」2014년 우리나라 이상기후 발생 현황

36) 기상청, 2012, 한반도 기후변화 전망보고서
37) 기상청, 2014, 한국 기후변화 평가보고서 2014-기후변화 과학적 근거
우리나라는 20세기말(1971∼2000년) 대비 21세기말(2071∼2100년) 기온 4.0℃, 강수량 17%, 해수면 20.9cm 상승 예상[38]
- 현재 추세로 저감없이 온실가스를 배출한다면(RCP8.5 시나리오), 21세기 후반(2071∼2100) 한반도의 연평균 기온 5.7℃, 강수량 17.6% 증가할 것으로 예상[39]
- 지역적으로 폭염, 호우, 가뭄의 빈도와 강도 증가 예상

〈표 25〉RPC 8.5 시나리오에 따른 한반도 21세기 기후변화 전망

<table>
<thead>
<tr>
<th>구분</th>
<th>단위</th>
<th>현재값 (1981~2010)</th>
<th>21세기 전반기 (2011~2040)</th>
<th>21세기 중반기 (2041~2070)</th>
<th>21세기 후반기 (2071~2100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>평균기온</td>
<td>℃</td>
<td>11.0</td>
<td>12.5</td>
<td>14.4</td>
<td>16.7</td>
</tr>
<tr>
<td>강수량</td>
<td>mm</td>
<td>1,162.2</td>
<td>1,201.1</td>
<td>1,342.1</td>
<td>1,366.9</td>
</tr>
<tr>
<td>풍속</td>
<td>m/s</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>상대습도</td>
<td>%</td>
<td>70.2</td>
<td>70.0</td>
<td>70.4</td>
<td>70.3</td>
</tr>
<tr>
<td>운량</td>
<td>할(1~10)</td>
<td>5.2</td>
<td>5.2</td>
<td>5.2</td>
<td>5.2</td>
</tr>
<tr>
<td>폭염일수</td>
<td>일</td>
<td>7.3</td>
<td>10.2</td>
<td>15.2</td>
<td>30.2</td>
</tr>
<tr>
<td>열대야일수</td>
<td>일</td>
<td>2.8</td>
<td>5.7</td>
<td>16.6</td>
<td>37.2</td>
</tr>
<tr>
<td>호우일수</td>
<td>일</td>
<td>2.0</td>
<td>2.1</td>
<td>2.8</td>
<td>2.8</td>
</tr>
</tbody>
</table>

자료: 기상청, 2015, 기후변화 2014-IPCC 제5차 평가 종합보고서

기후변화가 수질·생태계에 미치는 영향

수질에 미치는 영향
- 기온상승 및 동절기 두절도 악화에 따른 갈수기 조류 농도 증가
- 강한 강우강도로 인해 토사와 함께 난분해성 유기물질의 하천유입증가로 COD 증가 및 영양분질에 의한 조류 발생 심화

38) 국립환경과학원, 2011, 한국 기후변화 전망보고서
39) 기상청, 2012, 한반도 기후변화 전망보고서
수온 증가는 유역에 축적된 입자성 유기물의 용탈을 촉진하여 하천에 용존성 유기물 농도의 상승 초래

수생태계에 미치는 영향
- 수온상승, 홍수와 가뭄의 증가에 따라 수생생물의 서식환경의 급격한 변화 및 훼손 증가
- 환경 변화에 민감한 토착 생물종은 감소하고 황온성 외래어종의 증가와 고온성 생물종(남조류 등) 대발생 예상
- 수온상승은 수생동물에 대한 독성 강도 강화, 질병 저항성 감소, 산란시기 변동 등의 생리적 변화 초래

주요 사례
- 동절기 북한강 남조류 이상번식 현상(’11.11.23∼12.7)
 - (현상) 남조류의 일종인 아나베나의 증식으로 밴새 원인물질인 지오스민 농도 증가(45~270ppt) 및 수돗물 밴새 민원 다발
 - 수질이 얕호한 팔당호 지역에서 지오스민은 여름철인 6~8월에 일시적으로 발생하였으나 동절기에 다량 발생한 것은 최초

〈표 26〉팔당지역 지오스민 발생현황

<table>
<thead>
<tr>
<th>구분</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geosmin(ppt)</td>
<td>189/68</td>
<td>145/35</td>
<td>164/36</td>
<td>45/24</td>
</tr>
<tr>
<td>(최대/평균)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>발생 기간</td>
<td>7.1~7.21</td>
<td>6.8~7.1</td>
<td>7.7~8.11</td>
<td>8.22~8.24</td>
</tr>
</tbody>
</table>

- (원인) 예년보다 적은 강수량, 고온 등 이상 기상현상으로 추정
 - 강수량(청평지점, 9~10월)은 2010년의 18% 수준
 - 기온은 1973년 기상관측 이후 11월 최고치(최근 30년 대비 3.4℃ 높음)를 기록했으며 수온도 2010년에 비해 약 3.4℃ 높음
제2차 물환경관리 기본계획 후부록

제1부 평가 및 전망

36

<표 27> 팔당 상류지역 강수량 등 현황 비교

<table>
<thead>
<tr>
<th>주</th>
<th>팔당수온(℃)</th>
<th>청평댐 방류량(CMS)</th>
<th>청평강수량(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11월</td>
<td>12.9</td>
<td>12.6</td>
<td>11.1</td>
</tr>
</tbody>
</table>

주: 1) 청평강수량은 9~10월 자료

- (시사점) 기후변화에 따라 양호한 수질에서도 수시로 조류가 발생할 수 있으며 이에 따른 조류관리 체계 및 수돗물 정수 대책 (고도정수처리 등) 강화 필요

★ COD 오염도의 지속적 증가
- (현상) 2006년 이후 전국적으로 BOD는 개선되고 있으나 COD는 정체 되거나 악화추세
- 2006년 이후 중권역 평균 BOD는 25.0% 감소(2.4 → 1.8mg/L), COD는 8.9% 증가(4.5 → 4.9mg/L)됨에 따라 COD/BOD 비율도 증가 추세

<그림 4> COD와 BOD의 변화추이
- (원인) 기후변화에 따른 기온(수온) 증가로 인한 유기물의 용탈화 가속과 집중강수에 의한 난분해성 물질의 유입 증가로 추정
 - 그 외 BOD 중심의 환경기초시설 운영에 따라 COD에 대한 처리가 상대적으로 미흡한 것도 원인
- (시사점) COD/BOD 비율이 커짐에 따라 BOD 중심의 하천수질 관리에 한계점이 있는 바, 난분해성 유기물질의 관리 체계화 및 관리 필요성 증가
 - 환경기초시설에서의 난분해성물질 처리강화, 농경지 경작방법 개선, 불투수면 저감, 초기빗물유출 관리 강화 등

나. 4대강 본류하천환경의 근본적 변화

- 하천변화 현황 및 전망
 - (수량) 연간 11.7억㎥의 수량 추가 확보
 - (계획) 다기능보(8.0억㎥), 중소규모댐(2.5억㎥), 농업용저수지(2.5억㎥)를 통해 13억㎥ 확보
 - (실제) 확보된 수량은 11.7억㎥로서 구체적인 양은 다기능보(7.2억㎥), 중소규모댐(2.4억㎥), 농업용저수지(2.1억㎥)
 - 4대강에 16개 보 설치, 퇴적토 준설(4.5억㎥), 농업용 저수지 증고(96개) 등에 따라 총 11.7억㎥ 확보(팔당댐 저수용량의 5배) 변화

<table>
<thead>
<tr>
<th>계</th>
<th>한강</th>
<th>낙동강</th>
<th>금강</th>
<th>영산강</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.7</td>
<td>0.41</td>
<td>9.02</td>
<td>1.13</td>
<td>1.14</td>
</tr>
</tbody>
</table>

자료 : 4대강사업조사평가위원회, 2014, 4대강사업 조사평가 보고서
(유속) 4대강 보로 인해 체류시간이 증가(2.8~11.6배)하여 수계 특성과 기상 상황 등에 따라 하천·호소 특성이 교차되어 나타남

(표 29) 4대강 16개보 설치 후 체류시간(일)

<table>
<thead>
<tr>
<th>구분</th>
<th>한강</th>
<th>낙동강</th>
<th>금강</th>
<th>영산강</th>
</tr>
</thead>
<tbody>
<tr>
<td>체류시간(일)</td>
<td>1.7→5.8</td>
<td>8.6→100.1</td>
<td>4.5→12.8</td>
<td>3.6→27.7</td>
</tr>
</tbody>
</table>

주: 국립환경과학원 모델링 결과(2007~2011년 저수기 유량적용률)
자료: 감사원 보고서(2013.1)

(수심) 수심이 깊어지고, 준설 및 제방공사 구간의 수저 및 수변 생태계는 교란상태

(하천구역 내·손치) 추진과정에서 토지이용의 구획화 미흡으로 천수, 완충, 보존구역이 구분되지 않고 횡단적으로 조성되었으며 습지생태계에 적합하지 않은 식물종의 식재비중이 높음

수질 및 수생태계 영향

(수질) 4대강 사업 후 수질(BOD, Chl-a)은 전반적으로 개선 추세이나, 낙동강 상류 4개보는 수질이 악화
- 사업요소별 수질영향 모델링 결과, 낙동강은 보 건설로 체류시간 증가가 수질악화의 주요 요인으로 평가
- 하수가 인제거사상은 하천의 인농도를 크게 감소시켜 수질을 개선에 기여
- 보와 준설에 의한 체류시간 증가는 Chl-a와 남조류세포수의 증가요인으로 작용
- 사업 후 여러 지점에서 규조류에 비해 남조류의 상대적 우점도가 증가
 - 특히, 남조류는 인농도·수온·일사량이 높고 정체된 수역에서 우점하므로
 체류시간 증가가 남조류에 상대적으로 유리한 조건 제공
- 4대강 사업의 보 건설 및 준설로 인하여 주변 대수층의 지하수위 및 지하수 흐름이 지역적으로 변하였으며 보건설로 인해 주변 대수층 지하수의 장기 적인 수질변화가 예상됨
4대강 사업 전
자료 : 4대강사업조사평가위원회, 2014, 4대강사업 조사평가 보고서

4대강 사업 후

(수생태계) 보 건설 구간에서는 정수성 생물 증가 등의 변화 발생
- 강의 수변부가 직선화되었고 하중도와 모래톱이 상실되어 전반적인 서식처 다양성이 훼손되었으며 또한 둔치내의 소규모 생태하천의 서식처가 단순 하게 조성됨
- 보의 건설로 인해 강생태계는 호소생태계로 변화되어 유수 선호종이 정수 선호종으로 대체됨
- 4대강 전 지역에서 정수성 어종의 경우 개체수가 크게 증가하였지만, 유수성 어종은 대부분 개체수가 감소
- 수변육상생물(조류, 포유류, 양서파충류)의 서식처 감소로 인해 생물다양 성이 저하되는 경향이 나타남
- 수중생물(플랑크톤, 어류, 저서생물)의 경우 유수성에서 정수성 선호 생물종 으로 대체되는 경향을 보임
- 4대강 사업 직후 감소되었던 종수는 양적으로 완만히 회복되고 있으나 특정한 종들이 우점하는 경향을 보임
- 23개 어도 중 16개 평가한 결과 4개 어도가 어류 이동에 필요한 유속이 부적합한 것으로 평가됨

〈그림 5〉4대강사업 전후의 축산보 주변지역 지하수 유선망
<그림 6> 낙동강 본류 조사지점 연간 어류종수 및 개체 수 변화

- 큰빗이끼벌레에 대한 분포실태 조사 결과 큰빗이끼벌레는 4대강 본류와 지류, 저수지 등 다양한 수역에서 서식
 • 큰빗이끼벌레는 10cm/초 이하의 느린 유속과 침수 고사목의 나뭇가지, 수초, 자갈 등이 있는 곳에서 많이 번성하며, 서식하는 지역의 수질 (BOD) 도 I b ~ IV 등급으로 범위가 넓음
 • 금강 세종보·공주보 주변에는 큰빗이끼벌레가 부착하기 쉬운 수몰고사목이 널리 분포
 • 큰빗이끼벌레는 강우에 매우 약하여 일 40∼50mm 이상의 강우시에 70∼90% 정도가 유실되며, 약 15℃ 이하의 수온에서 약 1개월 정도에 걸쳐 천천히 사멸하는 것으로 조사

자료 : 4대강사업조사평가위원회, 2014, 4대강사업 조사평가 보고서
큰빗이끼벌레(환경부, 2015)

- 태형동물(苔形動物, moss animal)의 한 종류로 먹이섭취를 위하여 펼쳐진 lophophore(촉수 역할)가 큰빗을 닮아 붙여졌고, 국내에 가장 많이 분포
- 생물학적 분류 : 피후강 > 빗이끼벌레과 > 빗이끼벌레속 > 큰빗이끼벌레
- 국내외 분포 : 태형동물은 전세계적으로 3,500~5,000여 종 분포, 담수에는 약 50~80여 종 서식, 국내에는 11종이 서식한다고 알려져 있음

성장 및 생태
- 일년생으로 체내에 휴면아를 생성 후 방출, 이듬해 붐에 휴면아가 발아
- 각 개충은 촉수로 먹이를 취하는 여과 섭식자(filter feeder)
- 정체수역에 주로 서식, 물흐름이 약하고 먹이가 풍부한 유수역에서도 일부 발견(광주 광신보)
- 수중의 바위, 나뭇가지, 어망, 페타이어, 양식장 시설물 또는 식물줄기 등에 고착하여 생장
- 단위 개충(zooids)이 젤라틴성 분비물로 내어 서로 붙어 증식하며, 최대길이 2.5m에 달하는 군체를 형성하기도 함

증가요인 : 일반적으로 가뭄으로 인한 유량 및 유속 감소와 이로 인한 수온 상승, 플랑크톤(먹이)이나 유기물 입자가 풍부할 때 대량 증가

수질과의 관련성 : 수질에 직접적 영향을 받지 않는 것으로 알려져 있으며, 오히려 부유성 토양입자가 많거나 오염이 심한 수역에서는 성장이 저해되는 것으로 알려져 있음(Okamura and T. Hatton-Ellis, 1995)

독소 분비 등 유해성 : 개체 및 군체 자체 독성은 없다고 알려져 있으나, 다만 동물이라는 특성상 집단 사멸시 세포적절의 단백질 성분이 부패되면서 악취 발생 및 암모니아 극미량 생성
제 2차 물환경관리 기 본계획 부록

제 1부 평가 및 전망

※ 각 표시지점은 조사지점이며, 붉은색 지점은 큰빗이끼벌레 출현지점임

40) 큰빗이끼벌레 분포조사 및 생태특성 연구(‘15, 환경부)
대강 사업 개요

- (목적) 기후변화에 따른 홍수, 가뭄 등 물 문제 대처, 수질수생태계 개선, 레저문화 공간 확충, 경제위기 극복 등
- (사업기간) '09～'12(4년간)
- (사업비) 총 22.2조원(국토부 15.4, 환경부 3.9, 농식품부 2.9)
 - 수질개선사업(환경부)은 본사업 0.5조원(총인처리시설), 직접연계 3.4조원(공공수도처리시설, 생태하천 복원사업, 비정지감시설 등)
- (대상지역) 4대강 본류(본사업) 및 섬진강과 13개 주요 지류 국가하천(직접연계사업)

주요 사업(계획 기준)

- (용수 확보) 물 부족과 가뭄에 대처 할 수 있도록 보댐 건설, 농업용저수지 증고 등을 통해 충분한 용수 확보

<table>
<thead>
<tr>
<th>구분</th>
<th>계</th>
<th>보</th>
<th>중소 다목적댐</th>
<th>저수지 증고</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>12.5(115개)</td>
<td>7.6(16개)</td>
<td>2.5(3개)</td>
<td>2.4(96개)</td>
</tr>
<tr>
<td>한강</td>
<td>0.5(15개)</td>
<td>0.4(3개)</td>
<td>-</td>
<td>0.1(12개)</td>
</tr>
<tr>
<td>낙동강</td>
<td>10.0(42개)</td>
<td>6.5(8개)</td>
<td>2.5(3개)</td>
<td>1.0(31개)</td>
</tr>
<tr>
<td>금강</td>
<td>1.0(34개)</td>
<td>0.4(3개)</td>
<td>-</td>
<td>0.6(31개)</td>
</tr>
<tr>
<td>영산강・섬진강</td>
<td>1.0(24개)</td>
<td>0.3(2개)</td>
<td>-</td>
<td>0.7(22개)</td>
</tr>
</tbody>
</table>

※ 중소다목적댐: 송리원댐 2.0억㎥, 보현댐 0.2억㎥, 안동~임하댐 0.3억㎥

- (홍수 방어) 퇴적토 5.4억㎥ 준설로 홍수 소통공간을 확보하여 홍수위를 저하(1～5m)시킴으로써 200년 연도 이상 홍수에 대비
 - 홍수조절저 2개, 강변저류지 3개 등으로 홍수조절능력 3.5억㎥ 확보
- (수질 개선) 4대강 66개 권역의 좋은 물(BOD 기준) 비율을 75.8%(‘08년)에서 86.4%(‘12년)로 제고
- (친수 공간) 강의 상하류를 연결하는 자전거길(1,411km)을 설치하고 도시지역은 산책로, 체육시설 등을 설치하여 여가휴식 공간 제공
- (지역 발전) 다양한 4대강 연계사업을 추진하여 지역발전과 경제활성화
 - (문광부) 4대강 주변의 역사 유적과 유물을 복원하고 문화관광자원으로 개발하는 '문화가 흐르는 4대강' 추진
 - (농림부) 4대강 주변 농촌지역을 명품마을로 조성
 - (국토부) 수변공간을 활용하여 기존 도시를 활력 있게 정비
다. 사회 · 경제 · 기술 변화에 따른 물환경 이슈

고령사회에 따른 물환경 이슈

- **2025년 고령화 전망**
 - 2025년 인구는 51,972천 명으로 2015년 인구(50,617천 명) 대비 2.7% 증가한 것으로 세계 30위가 될 것으로 예측⁴²)
 - 고령인구(65세 이상 규모) 2025년 10,331천 명(인구의 19.9%)으로 2015년 고령인구(6,624천 명) 대비 1.6배 증가⁴³)

고령인구 증가에 따른 물환경 이슈

- (도전요소) 고령인구 증가에 따른 물환경 오염에 대한 건강민감 계층의 취약성 증가 → 강력한 음용수 및 친수용수의 안전수질관리체계 확보, 물환경 재원확보 방안 마련

41) 통계청, 2012, 장래가구추계 참고하여 재구성
42) 통계청, 2011, 장래인구추계
43) 통계청, 2011, 장래인구추계
- (기회요소) 안정된 경제력 및 여가시간이 풍부한 고령층 증가 → 친수환경 기반구축 및 다양한 친수서비스 제공, 은퇴자를 활용한 소유역 환경관리 가능

☐ 개인화 사회에 따른 물환경 이슈

○ 2025년 개인화 전망

- 1인 가구 비율은 1990년 9.0%에서 2010년 23.9%(415만 가구)로 증가하였으며 2015년 25.3%(506만 가구)에 이르고, 2025년 31.3%(656만 가구)까지 증가할 것으로 전망

![그래프 8] 연령별 1인 가구 추이('10~'25)

자료: 통계청, 2012, 장래가구추계 참고하여 재구성

▌ 개인화 심화에 따른 물환경 이슈

- (도전요소) 1인 가구 증가에 따른 개인주의화 및 개인정체성 다양화로 물이용에 관한 갈등 증가 → 물환경 갈등 조정체계 수립 필요

- (기회요소) 다양한 물환경 서비스 육구 증대, 물환경관련 의사결정에 참여 확대 요망 → 양질의 물환경 서비스 제공, 지역주민 및 국민이 참여할 수 있는 물환경 관리 거버넌스 구축

44) 통계청, 2013, 한국의 사회동향 2012
경제 여건 변화에 따른 물환경 이슈

2025년 경제 여건 변화 전망
- 2015년 3.66% 수준인 우리나라의 잠재성장률\(^ {45}\)은 2025년 2.64%로 감소할 것으로 예측\(^ {46}\)
- 생산가능인구(15~64세)는 2025년 34,902천 명으로 2015년 36,953천 명 대비 5.6% 감소\(^ {47}\)
 - 주요 경제활동인구인 25~49세는 2015년 19,398천 명에서 2025년 17,607천명으로 9.23% 감소

자료 : 통계청, 2012, 장래가구추계 참고하여 재구성

자료 : 통계청, 2012, 장래가구추계 참고하여 재구성

 경제활동인구 감소에 따른 물환경 이슈
- (도전요소) 물산업 시장 축소, 물환경 관련일자리 감소 → 물산업의 수직적·수평적 확장 제고, 물산업 등 신성장동력 개발 필요

\(^ {45}\) 잠재성장률 : 한 나라가 노동력, 자본, 자원 등 생산요소를 가장 효율적으로 사용해 물가상승(인플레이션)을 유발하지 않고 성장할 수 있는 최대치
\(^ {46}\) OECD, 2015, 경제전망(OECD Economic Outlook)
\(^ {47}\) 통계청, 2011, 장래인구추계
기술 발전에 따른 물환경 이슈

2025년 기술 발전 트렌드

- 2025년 인류가 누리게 될 10대 혁신기술을 예측한 ‘The World In 2025’48) 보고서는 ICT 발전에 따른 전 세계의 디지털화를 비롯해 생명 유전공학, 물리학, 의학 등의 분야의 성장을 예측

- ‘ECOsiht 2.0: 미래기술평가’49) 보고서에서는 2015년 주목해야 할 7대 기술로 감성컴퓨팅, 양자컴퓨팅, 뉴로모필 컴퓨팅, IoT 플랫폼, 로봇플랫폼, 머신비전, 마인드컨트롤 머신을 제시

〈표 30〉 2015년 주목해야할 7대 기술

<table>
<thead>
<tr>
<th>구분</th>
<th>7대 기술</th>
<th>주요 특징</th>
</tr>
</thead>
<tbody>
<tr>
<td>컴퓨터</td>
<td>감성컴퓨팅</td>
<td>• 인간의 감정을 인지, 해석, 처리, 표현하는 기계 • 인간-기계 공존을 위한 상호작용과 소통 • Warm ICT를 위한 컴퓨팅 아키텍처, 알고리즘 혁신</td>
</tr>
<tr>
<td></td>
<td>양자컴퓨팅</td>
<td>• 양자시대로의 진입을 주도하는 D-Wave Systems • 인공지능 혁신을 위한 양자컴퓨터 개발 경쟁 • 성급한 기대보다는 중장기적 미래 전략 필요</td>
</tr>
<tr>
<td></td>
<td>뉴로모필 컴퓨팅</td>
<td>• 포노이만 구조의 한계에 대한 도전 • 부분적 성과가 가시화되면서 상용화 시도 • 전력소비효율화, 멀티미디어처리, 지능화를 위한 플랫폼</td>
</tr>
<tr>
<td>플랫폼</td>
<td>IoT플랫폼</td>
<td>• 사물인터넷 플랫폼을 둘러싼 치열한 경쟁 진행 • 가격경쟁과 표준화, 기술하계 극복을 위한 경쟁 • 안전·보안, 프라이버시 등이 기술 확산의 걸림돌</td>
</tr>
<tr>
<td></td>
<td>로봇플랫폼</td>
<td>• 독특하고 유연하며 더 많이 연결된 로봇의 등장 • 기계적 운동 장치와 스마트한 정보 기기로서의 로봇 • 상호작용 능력의 확장을 위한 미래 로봇 플랫폼</td>
</tr>
<tr>
<td>기계 장치</td>
<td>마신비전</td>
<td>• 인간의 시각 인지능력을 위협하는 기계 • 인간의 눈이 아닌 새로운 기계의 눈 등장 • 양적 증가가 이끄는 질적 기술 진화</td>
</tr>
<tr>
<td></td>
<td>마인드 컨트롤 마신</td>
<td>• 궁극적으로는 인간 팔·다리 대체가 기술 개발 목표 • 복잡한 동적을 사용자 의도대로 수행하는 기계 신체 • 기술융합 노력과 더불어 인간·융리 이슈 해결 필요</td>
</tr>
</tbody>
</table>

자료 : ETRI, 2014, ECOsiht 2.0: 미래기술평가-기술·인문·사회 통합적 기술예측 인용

48) Thomsonreuters, 2014, The World In 2025
49) ETRI, 2014, ECOsiht 2.0: 미래기술평가-기술·인문·사회 통합적 기술예측 인용
기술 발전에 따른 물환경 이슈
- (도전요소) 온라인 커뮤니티, 네트워크를 통한 사이버 공동체 활성화로 물환경 관리 및 서비스에 대한 직접적 참여 및 정보요청 확대 → 물환경 관리 E-governance 두루
- (기회요소) IT기술 발전으로 정보와 지식의 즉각적 획득 가능 → IT기술을 활용한 물환경 정보 수집 및 모니터링 혁신을 통한 스마트한 물환경 관리

라. 물환경 여건 변화

□ 물수요의 변화
- 수자원이용량은 1980년 128억㎥ 대비 2007년 255억㎥으로 2배로 증가하였으나 최근 정체 경향
- 농업용수는 최근 경지면적 감소에 따라 다소 감소추세, 생활용수는 인구 증가율 감소, 물수요관리 강화 등으로 정체
 - 1인당 물 소비량은 ’00년 380 L/일에서 ’09년에는 332 L/일로 12.6% 감소
- 2020년 생활·공업·농업용수 수요량은 2007년 대비 3.6%(9.1억㎥) 증가한 263.9억㎥으로 전망(기준 수요 기준50)
- 농업용수 수요량은 감소하고, 상대적으로 깨끗한 원수가 요구되는 생활용수 및 공업용수는 증가

〈표 31〉연도별 용수 이용현황 및 전망

<table>
<thead>
<tr>
<th>구분</th>
<th>이용현황</th>
<th>전망2)</th>
<th>’07년 대비 ’20년 증가량</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>‘80</td>
<td>‘90</td>
<td>‘94</td>
</tr>
<tr>
<td>총 이용량1)</td>
<td>128</td>
<td>213</td>
<td>237</td>
</tr>
<tr>
<td>생활용수</td>
<td>19</td>
<td>42</td>
<td>62</td>
</tr>
<tr>
<td>공업용수</td>
<td>7</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>농업용수</td>
<td>102</td>
<td>147</td>
<td>149</td>
</tr>
</tbody>
</table>

주: 1) 총 이용량은 유지용수 제외, 2) 기준수요 기준
’03년 대비 ’07년 이용량 측정은 공업용수 신뢰도 제고(국토해양부 통계기준의 실용량 반영)로 인한 것임

50) 국토교통부, 2011, 수자원정기종합계획(2011~2020) 참고
수질 오염원 변화

- 점오염원에 비해 비점오염원의 수질오염물질 배출부하량 비중이 커질 것으로 전망

- 2020년 비점오염원 배출량(1일, 전국)은 BOD 1,152톤, T-P 58.3톤으로 각 수질오염물질 배출량의 72.1%, 68.6% 차지 전망

<table>
<thead>
<tr>
<th></th>
<th>BOD</th>
<th>T-P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>합계</td>
<td>점</td>
</tr>
<tr>
<td>현황</td>
<td>2010</td>
<td>1,640</td>
</tr>
<tr>
<td>전망</td>
<td>2015</td>
<td>1,618</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>1,597</td>
</tr>
</tbody>
</table>

자료: 환경부, 2012, 제2차 비점오염원관리 종합대책 인용
생활계의 배출부하량 비중은 감소하는데 반해 축산계, 토지계는 증가할 것으로 전망.

<table>
<thead>
<tr>
<th>구분</th>
<th>생활계</th>
<th>축산계</th>
<th>산업계</th>
<th>토지계</th>
<th>기타</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>'10 현황</td>
<td>10,824 (100)</td>
<td>3,451 (31.9)</td>
<td>4,005 (37.0)</td>
<td>2,574 (23.8)</td>
</tr>
<tr>
<td></td>
<td>'17 전망</td>
<td>11,013 (100)</td>
<td>3,594 (32.6)</td>
<td>4,005 (36.4)</td>
<td>2,588 (23.5)</td>
</tr>
<tr>
<td>배출 부하량</td>
<td>'10 현황</td>
<td>1,640 (100)</td>
<td>474 (28.9)</td>
<td>330 (20.1)</td>
<td>31 (1.9)</td>
</tr>
<tr>
<td></td>
<td>'17 전망</td>
<td>1,588 (100)</td>
<td>401 (25.3)</td>
<td>318 (20.0)</td>
<td>30 (1.9)</td>
</tr>
<tr>
<td>T-P</td>
<td>'10 현황</td>
<td>636.1 (100)</td>
<td>91.7 (14.4)</td>
<td>345.7 (54.4)</td>
<td>161.9 (25.4)</td>
</tr>
<tr>
<td></td>
<td>'17 전망</td>
<td>640.7 (100)</td>
<td>95.0 (14.8)</td>
<td>345.7 (54.0)</td>
<td>162.6 (25.4)</td>
</tr>
<tr>
<td>배출 부하량</td>
<td>'10 현황</td>
<td>97.8 (100)</td>
<td>26.8 (27.4)</td>
<td>24.9 (25.5)</td>
<td>3.1 (3.2)</td>
</tr>
<tr>
<td></td>
<td>'17 전망</td>
<td>90.9 (100)</td>
<td>21.1 (23.2)</td>
<td>23.8 (26.2)</td>
<td>2.7 (3.0)</td>
</tr>
</tbody>
</table>

주 : 배출부하량은 당초 계획의 완료를 가정한 전망치
자료 : 환경부, 2013, 물환경관리 여건 변화에 따른 정책방향 설정 연구

물을 즐기고자하는 국민적 욕구 증대

- 이·치수에서 ‘즐기는 물(樂水)’로 물에 대한 국민 기대 변화
 - 국민소득 3만불 시대에는 생활수준 향상에 따라 ‘먹는 물’에서 누구나 향유해야 할 문화적인 측면으로 물에 대한 요구 변화
 - 주요 하천에 대한 접근성(산책로, 수변공원, 자전거길) 강화로 해적한 생활 환경을 위한 핵심요소로서 맑은 물에 대한 국민 요구 증대
 - 생태적으로 복원된 양재천, 안양천 등 도심하천은 보편적 휴식 및 생활 공간으로 자리 매김
물 문화의 기능을 높일 수 있는 물관리 요구

- 수생태계가 복원된 도심 생태하천(양재천, 안양천 등)은 도시의 새로운 문화공간을 형성
 - 작은 음악회 개최, 영화 상영, 인라인·자전거·마라톤 등호인 모임 등의 문화·체육 활동을 위한 공간 제공
 - 기존 수돗물, 공업용수의 공급원에서 수상스포츠, 하천변 하이킹 등 천수 활동의 필수요소로서 물의 기능이 변화

물의 경제적 가치 부각

- 미래의 가장 큰 도전이자 기회로서의 ‘물’
 - 지속적인 인구증가, 인구 집중화에 따른 메가시티51) 형성과 기후변화 등으로 인해 미래에는 깨끗한 물 확보가 국가안보의 핵심의제로 등장할 전망
 - 물산업의 범위는 기존의 상하수도 중심의 공업용수, 생수, 설비시설 등에서 기후변화에 따른 가뭄, 홍수에 대응, 생의 질 개선 등을 포함한 광의의 개념으로 확장52)

세계 물산업 시장은 2025년에 8천 650억 달러의 규모로 성장할 것으로 전망53)

표 34 물이용별 시장 규모 및 전망

<table>
<thead>
<tr>
<th>구분</th>
<th>2007년</th>
<th>2025년</th>
<th>연평균 증가율</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>규모</td>
<td>비중</td>
<td>규모</td>
</tr>
<tr>
<td>세계물시장</td>
<td>3,620</td>
<td>100</td>
<td>8,650</td>
</tr>
<tr>
<td>상수</td>
<td>1,720</td>
<td>48.5</td>
<td>3,880</td>
</tr>
<tr>
<td>하수</td>
<td>1,530</td>
<td>42.3</td>
<td>3,550</td>
</tr>
<tr>
<td>공업용수/하폐수</td>
<td>240</td>
<td>6.6</td>
<td>570</td>
</tr>
<tr>
<td>물재이용</td>
<td>10</td>
<td>0.3</td>
<td>210</td>
</tr>
<tr>
<td>해수담수화</td>
<td>120</td>
<td>3.3</td>
<td>440</td>
</tr>
</tbody>
</table>

자료: Global Water Intelligence, 2008, Global Water Market 2009 재구성

51) 메가시티 : 글로벌 비즈니스 창출이 가능한 경제 규모를 갖추고, 인구가 1,000만명 이상 인 거대 도시를 가리킴
52) 국토교통부, 2014, 물과 미래
선도 국가의 물산업 육성 정책 추진

- 이스라엘은 법정부 차원의 물산업 육성정책과 함께 국가 공기업인 Mekorot을 중심으로 물산업 클러스터링 전략 추진

 - 자국 물기업이 개발·구축한 물산업 첨단기술(advanced water technology)을 전세계 100여개국에 수출

- 싱가포르는 물산업 클러스터 구축, 기술개발 및 역량강화, 국제화 등 3개 분야로 구분하여 정부 다른 기관과의 협력을 통해 물산업 육성 프로그램 운영 중

- 일본은 정부펀드를 조성하여 해외 물기업의 M&A 등 직접투자를 통하여 단기간 내 해외 물시장 진출 도모

자료: Global Water Intelligence, 2008, Global Water Market 2009

원고�: KISTEP, 2013, 창조경제와 물 산업
55) 국토교통부, 2014, 물과 미래
56) 국토교통부, 2014, 물과 미래
마. 물환경 여건 SWOT 분석

<table>
<thead>
<tr>
<th>강점</th>
<th>약점</th>
</tr>
</thead>
</table>
| 생분해성 유기물질 감소(BOD 개선) | 수질관리
| 오염충격제 도입(수질관리 이행력 확보) | 난수해생물질을 포함한 총 유기물질 관리 곤란
| 제도적 기반 및 정부주의의 비정지금사업 확대 | 사전예방적 오염물 관리 및 참여 기반 부족
| 가축분뇨 자원화 촉진 및 시설 확충 | 2차 산업에 비해 관리기준 미흡
| 건강성 조사·평가 자료 및 경험 확보 생태복원사업의 양적 확대 | 수질개선위주의 물관리 목표 설정 생태지역의 종합적 연결성 부재
| 특정수질유해물질관리기반 마련 | 관리허가체계에 환경영향 분석 및 기술수준 미흡

<table>
<thead>
<tr>
<th>기회</th>
<th>위협</th>
</tr>
</thead>
<tbody>
<tr>
<td>고령화</td>
<td>환경민감 취약계층(고령층) 증가</td>
</tr>
</tbody>
</table>
| 에코도시화 체계 등 물문화 및 경제성장동력 강화 | 도시화
| 물환경서비스의 성장동력화 요구 증대 물환경의사 결정 참여 증가 | 경제사회
| 규제 한화의 필요성 증가, 재원확보의 어려움, 물환경관련 갑등 증가 우려 | 기술
| ICT와 빅데이터를 활용한 물환경정보 수집 및 모니터링 확산 | 물환경 선규 유해물질 발생

〈그림 11〉물환경 여건 SWOT 분석
5대 핵심전략별 주요과제
1. 건강한 물순환 체계 확립

<table>
<thead>
<tr>
<th>제1차 물환경관리 기본계획</th>
<th>제2차 물환경관리 기본계획</th>
</tr>
</thead>
</table>
| 물순환 개념 도입 | 물순환 체계 정착
→ 수질개선·수생생물 보호·건강한 물이용 및 물문화 창출 |
| 하천유량에 생태적 고려 미비 | 수질·수생태계와 환경생태유량과의 연계
| 물관리시설별 처리수 재이용 추진 | 산림·도시·하천·물관리 시설 간 물순환 체계 강화 |
| 부처별 물관리 | 통합 물환경 관리 |

1-1. 수질·수생태계를 위한 유량확보 제도화

가. 현황 및 문제점

- 현행 수자원 관리는 생활·공업·농업용수 등 공공수역에서 취수하여 이용하는 물(off-stream use)이 중심이며, 수생태, 친수, 어업, 경관 등과 관련된 수체 내 물이용(in-stream use)에 대한 관심 미흡57)

57) 한국환경정책 평가연구원, 2015, 환경생태유량, 친수용수 등 물수요 변화에 대응하는 물환경 정책 개발 연구
국가의 물 수요와 활용

- 최근 30년간 생활·농업·발전용수 등 인간의 물이용이 우선되었으며 하천유지용수는 수자원의 총 이용량의 20% 안팎(25억 m³(16%), 1980년→78억 m³(23%), 2007년)으로만 사용

금성장관

- 현행 하천유지유량 관련 정책은 인간의 물수이용기능을 중점적으로 고려하여 수생태계 특성 미반영

자료: US EPA(2012), 「The Importance of Water to the U.S. Economy Part 1: Background Report」

그림 1-1-1 물이용 형태에 따른 분류

그림 1-1-2 용도별 수자원 이용 비중
- 하천법률의 변동성이나 생태적으로 민감한 하천을 고려하지 않은 최소유량 으로 하천유지유량 규정

- 대하천 중심으로 하천유지유량이 고시되므로 멸종위기종이 서식하는 등 생태적으로 중요한 중소규모의 하천은 유량 확보의 우선순위가 낮음

응 가뭄에 대비한 선제적인 용수 비축에도 하천유지용수의 우선권이 낮아 가뭄 시 하천유량 확보가 어려움

- 기존 생공농업용수에 비해 하천유지용수 수리권 우선순위 낮음
 - 전체 4단계 가뭄 단계 중 두 번째 단계인 ‘주의’단계에서 하천유지용수 공급을 100% 삭감하는 조치가 이루어짐 ⑸

표 1-1-1 물이용 형태에 따른 분류

<table>
<thead>
<tr>
<th>구분</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>1단계</td>
<td>생활·공업·농업·하천유지용수 실수요량 공급</td>
</tr>
<tr>
<td>2단계</td>
<td>생활·공업·농업용수 실수요량 공급, 하천유지용수 감량</td>
</tr>
<tr>
<td>3단계</td>
<td>생활·공업용수 실수요량 공급, 농업·하천유지용수 감량</td>
</tr>
<tr>
<td>4단계</td>
<td>생활·공업·농업·하천유지용수 감량</td>
</tr>
</tbody>
</table>

- 가뭄 대응체계에서는 생활용수나 농업용수 공급이 줄어들기 전까지는 물 이용자가 가뭄의 심각성을 체감하지 못함

58) 국토해양부(2009.1.19.) 가뭄대책 추진상황
나. 주요대책

◆ 수질·수생태계를 고려한 환경생태유량 산정 및 공급 제도화
◆ 환경가뭄지수 개발 및 도입
◆ 가뭄 시 수생태계의 물수요를 고려한 가뭄대응방식 수립

[나. 주요대책]

□ 환경생태유량 산정 및 공급 제도화

자연·사회 환경가치의 보전기반을 고려한 환경생태유량 개념 정립 및 산정 방법 과학화
- 우리나라의 수리·수문·수생태학 등 물환경 특성을 반영할 수 있는 과학 적인 환경유량 산정방법을 개발 및 적용하여 수생태계의 건강성 회복과 유지를 위한 필요유량 산정
- 환경유량 산정을 위한 모니터링 체계구축, 모델 구축 및 모니터링 전문 인력양성 교육 및 홍보 등 기반 마련

환경생태유량을 법제화하여 하천의 생태적 기능을 고려한 유량관리 기반을 마련
- 주요 하천이나 생태적으로 중요한 지류지천에 대한 환경생태유량을 산정 하고 이를 사전 확보하는 방안 제도화(하천유지유량에 반영59)
- 천연기념물이나 멸종위기 야생동식물(1·2급) 서식하는 등 생태적 가치가 높은 하천 구간에 대해서는 수량 공급원을 다양화하여 안정적인 환경생태 유량 공급계획 수립
- 환경생태 유량 개념을 댐·보·저수지내의 가용수량의 운영계획에도 반영하여 생태계의 물이용이 잠재적 경쟁 관계에 있는 농업·생활용수 등 인간의 물이용과 대등한 지위로 고려

59) 수질 및 수생태계 보전에 관한 법률 일부개정안에 반영(‘16)
수체의 가뭄 취약성을 나타내는 환경가뭄지수를 개발

- 가뭄이 수생태계에 미치는 영향 등을 조사하고 이를 토대로 환경가뭄지수 개발 및 산정
 - 물환경 보전을 위한 가뭄단계별 대응방안을 마련하고, 필요한 경우 환경 생태유량에 반영하여 유량확보 우선순위 부여
 ※ (해외사례) 건전화 모형을 활용하여 생태적 기능을 유지할 수 있는 취수기능량 제안(美 로드아일랜드)하는 등 수생태계 영향을 고려한 유량관리 추진

가뭄 시 물환경 보호를 위한 단기 및 중장기 가뭄대책 수립

- 가뭄에 따라 물부족 위험은 인간(생활·공업·농업용수)과 수생태계(환경생태 유량)가 합리적인 수준에서 부담해야 한다는 방향성을 가지고 물환경 보전을 위한 가뭄대책 수립

 (단기대책) 환경 가뭄단계별로 수질수생태계수량 등에 대한 모니터링 강화, 유역 방류수 수질기준 강화, 배출원 지도 점검 등의 단기 대책이 들어 있는 위기대응 메뉴얼 마련
 (중·장기 대책) 지하수 및 하수방류수 재이용 등의 대체수자원 공급 등 중·장기 대책을 마련

다. 향후 추진 일정

- 환경생태유량 법제화(’17)
- 환경생태유량 산정 및 고시(’18~)
- 환경가뭄지수 개발 및 관리대책 마련 (’16~’25)
 - 가뭄 취약성 평가 및 환경가뭄지수 개발 연구(’16~’18)
 - 환경가뭄지수 도입 및 관리대책 수립 추진(’19~)
국외 사례1-1-1

◆ 선진국은 수생태계 보호를 위한 환경생태유량을 법제화60)
 ○ 독일 <물관리법>은 “최소유지유량” 개념을 설정하여 지표수의 물막이(저수) 또는 이윤은 생태적 잠재성과 양호한 화학적 상태가 유지되는 범위 내에서만 허용
 ○ 미국의 <야생경관 하천법>은 강이 자유롭게 흐르는 것을 저해하는 사업을 금지하는 등 최소 한의 하천유량의 흐름이 유지될 것을 요구
 - 또한 다수의 주정부가 생태계를 고려한 하천 수리권을 법제화
 ○ 호주는 생태계를 고려한 환경유량을 제도화한 가장 모범적인 사례
 - 2007년 제정된 <물법(Water Act)>은 유역의 생태적 가치와 서비스를 보존, 복원, 제공하는 것을 목적으로 하며, 환경적인 편익을 고려해 물을 할당하며 하천의 건강성을 회복할 수 있도록 환경유량을 설정
 - 호주 머레이(Murray) 강에 대해 월별로 확보해야 하는 최소 수량을 설정하였으며, 농업용수 수리권을 매입하는 등 하천의 환경유량 확보를 위한 정책을 적극적으로 추진

60) 환경부, 2014, 수생태계의 효율적인 복원 및 관리를 위한 법률 제정방안 연구
1-2. 지표수-지하수 연계 관리

가. 현황 및 문제점

- 인간과 생태계에서 사용하는 담수자원의 약 95%는 지하수로, 그 양이 상대적으로 풍부하여 인간과 수생태계의 공히 유용할 수 있는 자원61).
- 국내에서도 지하수의 사용량이 꾸준히 증가하여 1980년대에는 전체 수자원 사용량의 3%를 차지하였으나 2010년대에는 12%로 4배 증가62).
- 지하수의 많은 양이 지표수와 기저유출의 형태로 상호 연계되어있으나 그간 공공수역의 수질-수생태계 관리 측면에서 기저유출과 지표수의 관계는 그리 중요하게 고려되지 않음
- 기저유출은 하천에 유량을 공급해주는 주요 수원이며, 습지 및 식물 군락지 등의 많은 생태계가 지하수와 기저유출에 의해 유지되고 있어63) 기저유출의 관리는(특히, 갈수기간) 수질 및 수생태계관리에 매우 중요

62) 국토교통부, 2013
63) 한국환경정책평가연구원, 2015, 지하수 의존도에 따른 수생태계 관리에 기저유출지표 개발 및 활용방안 연구
- 대전 갑천의 경우 기저유출이 하천유량의 약 90%, 강우기에도 30%를 차지하고 있으며 64) 지하수 기원의 절소가 지표수에 미치는 영향은 45~60%로 추산됨 65)
- 북한강 농촌유역의 기저유출에 의한 총인 오염부하는 30%로 추산됨 66)
- 하지만, 국내의 지하수 관리법을 검토하였을 때 지하수를 인간 중심의 지속가능한 이용에만 초점을 두고 있어, 기저유출이 하천 유량과 수질에 미치는 영향, 더 나아가 지하수 의존형 수생태계에 미치는 영향을 고려한 정책은 미비

대가뭄과 같은 기후변화에 대응하기 위해서 하천의 환경적·생태적 지속 가능성을 유지하기 위해서는 기저유출 관리를 통한 지표수·지하수 연계관리 체계가 필요

나. 주요대책

- 기저유출의 지표수에 대한 영향분석
- 기저유출 영향분석을 통한 지표수·지하수 통합관리 체계구축

☐ 기저유출의 지표수에 대한 영향 파악

(기저유출지표 산정) 국내에 적용할 수 있는 합리적인 방법으로 전국 기저유출지표 및 지도를 산정하여 지표수에 대한 기저유출의 양적 영향파악

(수질영향 파악) 가축분뇨 및 비점오염원 등에 의한 토양오염우심지역에 기저유출의 수질을 모니터링하여 수질에 미치는 영향을 파악

(수생태계 영향 파악) 기저유출지표를 바탕으로 기저유출지표가 큰 지하수 의존성 하천생태계(습지포함)의 기저유출의 생태계 영향 파악

65) 김건하, 이호식, 2009. 질산성 질소 기저유출이 지표수 수행에 미치는 영향
66) 임경재, 2013, 기저유출 분리 방법 및 대수층 오염예방 산정 방법에 관한 연구
기저유출 영향 분석을 통한 지표수-지하수 관리체계 구축

- 기저유출 영향분석에 의해 수질 및 수생태계가 취약한 유역에 점·비점오염원 관리 강화
- 향후 정밀한 영향파악 및 기저유출의 수질 및 유량의 모니터링 체계 구축 및 관리기본계획 수립
- 기저유출의 영향이 큰 지역에 불투수면 관리 및 지하수 개발관리 제한

다. 향후 추진 일정

- 기저유출 유량 및 수질 정량화를 위한 모니터링(’19∼’22)
- 실측 자료 기반 유역모델링을 통한 유역통합관리체계 마련(’21∼’24)
 - 지표수에 대한 기저유출 영향 예측시스템 구축
- 기저유출 관리 방안 마련(’20∼’25)
 - 수계별 기저유출정보 DB화(’21∼’23)
 - 생태계 영향 규명을 통한 보전 대책 수립(’24∼’25)
요약 1-2-1

- 국내 기저유출 연구사례

 ◦ 유역단위 수질관리를 위한 요소로서 단기 지하수 유출과 관련된 국내 기술기반과 자료기반을 평가
 ◦ 기저유출량 분석

 - 유량
 - 대전 급천(도시관통하천)에서 4, 5월의 경우 90% 내외, 하절기에도 30% 내외
 - 월곡리 소하천(농촌소유역)에서 실측 유량의 약 63%로 7월(35%)을 제외한 기간에는 72~99%。
 - 주관역명: 소양강, 소관역명: 소양강하류, 주소: 춘천시 동연 월곡리
 - T-N
 - 국내 지하수 기원 질소부하량은 45% 이상으로 추산.
 - 대전 급천(도시관통하천)에서 약 60%(2009년 김건하 등, NO3-N)
 - 월곡리 소하천(농촌소유역)에서 약 53%(2006년 신용철 등, '04.4~’05.3월)
 - T-P
 - 월곡리 소하천(농촌소유역)에서 30%(2006년 신용철 등, '04.4~’05.3월)

- 청미천유역 기저유출 분석

 - 투수지역으로 축산계 오염 비율(T-P 68.4%)이 높음
 - 산·농지가 많고 대부분이 변성·화강암으로 구성되어 충적토가 주로 분포
 - 축산계가 '10년 발생부하량 93.6%, 배출부하량 68.4% 차지(T-P)
 - 청미천 상·중류, 축산천 등이 훼악하며 건기 시 약 60% 영향
 - 유량은 약 38%, NO3-N는 약 40%이며 건기 시 유량은 약 60%, NO3-N는 약 52~58%임
 - 지하수취약성이 높고 가축분포도가 높은 청미천 상·중류, 축산천 등 세권역이 기저유출에 의한 오염발생 가능성이 가장 높음
 - 분석기간: 2009~2012년 / 건기: 10월~6월

67) 환경부, 2013, 기저유출에 의한 하천오염향 조사지침 마련
68) 김건하, 이호식, 2009, 질산성 질소 기저유출이 지표수 수질에 미치는 영향
69) 신용철 외, 2006, 농업소하천 유역의 기저유출에 의한 오염부하특성
선진국의 기저유출관리를 통한 하천환경 관리

- 미국 USGS에서는 2003년부터 기저유출에 대한 관심과 연구가 진행
 - PART, HYSEP 등의 직접유출과 기저유출을 분리하는 프로그램을 개발
 - 미전역의 유량 관측망을 이용한 기저유출을 산출하여 기저유출지표인(Baseflow index; BFI)를 구축
 - 미국의 경우 지역별 차이는 나타내지만 지하수를 성활용수 및 다양한 용수공급원으로 이용하고 있음에 따라 기저유출의 중요성을 해부로 대응
 - 특히 수자원에 매우 민감한 캘리포니아주에서는 인간뿐만 아니라 지하수 의존형 수생태계에 대한 관심이 매우 큽니다

<그림 1-2-2> USGS에서 구축한 미전역 기저유출지표

- 호주에서는 특히 지하수가 생태계에 큰 영향을 미친다고 분석하여 호주 기상청에서는 지하수 의존형 생태계(Groundwater Dependent Ecosystem; GDE)를 관리하기 위해 ATLAS 시스템을 구축
 - ATLAS는 호주 전역의 습지, 수변, 육수, 하천내의 다양한 GDE를 실시간 평가하여 필요한 생태유지유량을 제공
 - 이뿐만 아니라 GDE를 위한 정책도 수립하여 체계적인 GDE관리를 수행하고 있음
유럽에서는 지하수 보호를 위한 지침 및 연구수행
- GENESIS는 기후변화와 토지이용의 영향이 지하수와 GDE에 미치는 영향을 분석하기 위해 지하수의 이용이 상대적으로 많은 17개 유럽국가들이 2009년부터 연구를 수행
- 총 7개의 연구로 구성되어 지하수에 대한 중요성 인식제고와 관리방안에 대해서 연구를 수행

〈그림 1-2-3〉 호주의 ATLAS 웹 시스템

기저유출지표란 총유출량의 기저유출량비를 나타내는 지표로서 유역이 얼마나 많은 기저유출을 의존하고 있는지를 나타내는데 사용된다.

1-3. 전 국토의 물 저류·함양 기능 향상

가. 현황 및 문제점

- 기후변화(강우특성변화)와 도시화(블루수면 증가)로 인한 물순환 왜곡은 비점오염원 증가, 종다양성 감소 등 수질 및 수생태 문제 발생, 이에 대한 대응필요성 대두
- 도시화 및 산업화에 따른 국내 불투수면의 지속적 증가(3%’70 → 7.9%’12), 전체 6%에 해당하는 51개의 소권역의 불투수면적률이 25% 이상(※ 참고자료 1-3-1:전국 불투수면 면적률)

자료: 환경부 및 한국환경공단, 2013, 전국 불투수면적률 조사 및 개선방안 연구

„그림 1-3-1“ 전국 불투수면적률 시계열 변화 추이

- 기후변화와 도시화(블루수면 증가)는 강우유출량 증가로 홍수 심화, 건기시 기저유출 감소로 하천건천화 등 자연 물순환을 왜곡

73) 국토 면적 중 수계와 임야를 제외하면 이는 전 국토의 22.4%에 달함 (환경부, 2012). 전국 기반 공간데이터(수치지도 및 수치지적도 등)의 부재로 ’70~’00년까지의 불투수면적률은 지적통계연보 자료로부터 산정
74) 도시화가 진행되어 불투수면이 증가함수록 중량산량 및 침투률은 감소하고 표면유출량은 증가시킨다. 또한, 불투수면 증가는 강우시 첨두유량 증가와 동시에 첨두유량으로 도달시간을 감소시켜 홍수현상을 심화시킨다.
도시화에 의한 물순환 왜곡

도시의 블루수면 증가에 따른 강우유출수 증가는 하천으로 비점오염원을 직접유입(개별배출수)시키거나 하수처리구역에서는 고농도의 관거월류수(CSO) 집중 유출시켜 수질수생태계 건강성에 영향(※ 참고자료 1-3-2: 불투수면적과 수질수생태계 건강성 관계)

관거월류수 개념도

표 1-3-1 부산과 대전의 오염원별 비점오염원 배출량(BOD '11기준)

<table>
<thead>
<tr>
<th>비점오염원(BOD)</th>
<th>비점오염원(Kg/일)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>개별배출수</td>
</tr>
<tr>
<td>부산</td>
<td>10,691</td>
</tr>
<tr>
<td>대전</td>
<td>412</td>
</tr>
</tbody>
</table>

자료: 한국환경정책평가연구원, 2014, 비점오염원 관리 실효성 제고를 위한 토지 소유이용자 합리적 책임부여방안연구

침투‧저류 등 친환경 분산식 빗물관리기법인 저영향개발기법과 이를 적용한 그린빗물인프라(GSI)의 설치·확대로 통하여 도시물순환 회복 및 사전예방적 비점오염원 관리추진 필요(※ 참고자료 1-3-3: 저영향개발(LID)과 그린빗물인프라(GSI) 개념 및 사례)
제 2차 환경관리 기술계획 보속

제 2부

5 대 핵심정책론별 주요과제

71차 물환경관련 기술계획 분석

식생체류지

투수성포장

식생수로

침투도랑/저류지

나무화분여과상자

옥상녹화

<그림 1-3-4> 그린빗물인프라 조성 사례

- 현재 저영향개발 기술요소 가이드라인(’13.4)75) 및 환경영향평가서 저영향 개발기법 적용 매뉴얼 (’13.7) 마련76), 수질 및 수생태계 법률 시행규칙 개정77), 환경사업 운영78) 및 효과평가를 위한 모니터링(’15∼’17) 등 그린 인프라 기반 마련 중

하지만 LID/GSI의 실질적인 확산을 위해서는 기술·재정·제도 면에서 해결해야할 문제 존재

- 기술적 문제점: 도시의 높은 밀집도와 여름철(6∼8월)에 발생하는 국지적 집중호우 등의 우리나라 지역적·기후적 특성에 맞는 저영향개발기법의 개발 필요, 다양한 제품들에 대한 성능기준 부재79), 저영향개발기법을 적용한 제품·시설들의 유지·관리 어려움80)

75) 기술요소 소개, 요소별 설치 및 유지관리, 적용위치 및 선정기준 등 제시
76) 개발사업의 단계별(전략평가, 환경평가, 사후관리) LID기법 적용방안 포함
77) 비점오염원 설치신고자는 저영향개발방안을 포함하여 비점오염기감제관, 비점오염기감시설 설치제 등 신고 사례 제출
78) 비점오염올하수도 단지 1단계(충북 청주시 청원구의 오창과학 산업단지), 2단계(전북 전주시 효자동 일원 주거지역) 실시
79) 미국, 독일 등 우리나라와 토질 및 강우특성이 다른 지역에 적용된 기술요소 도입에 따라 국내 적용시 성능 검사가 필요
80) 설계 및 유지관리 어려움: 설계 및 시공경험 부족, 집중호우시 배수지연, 인공습지 등의 수질확보 및 침투시설의 침투능 유지관리 어려움
제2차 물환경관리 기본계획 부록

제 2 차 물환경관리 기 본 계획 부록

나. 주요대책

- LID/GSI 적용 확대를 위한 기술적/제도적 기반 마련
 ◦ 한국형 저영향개발기법/그린빗물인프라(LID/GSI) 개발 및 보급
 - 물순환, 비점오염저감, 녹색 공간 조성 등 LID/GSI의 도입목적, 토양, 강우 및 식생 등 유역특성, 한국인의 생활문화 등을 고려하여 한국형 LID/GSI를 개발
 - 유역전반에 소규모·분산형 LID/GSI와 유역말단에 중소규모 저류형 시설들의 혼합 연계하는 LID/GSI 개발·보급

81) 설치 및 유지관리 비용 증가: 사업시행자의 기존 우수배제도설 대비 공사비 증가 우려, 지자체의 유지관리인력 및 비용, 식생관리 등을 위한 유지관리비용 발생에 대한 재원 조달체계 부족
82) 주거특성, 주거입지, 생활습관 등을 반영하여 LID 설계 및 시공 수행해야 함
LID/GSI 시설의 성능검사제 도입 및 성능검사센터 운영
- LID/GSI 시설별 객관적인 성능검사 결과를 수요자에게 제공하여 비용효과적인 우수 시설설치 및 설계를 시공 유도
- 성능이 인증된 LID/GSI와 수질오염층량제와 연계 운영
 - 장치형 LID/GSI의 경우 성능검사 결과보고서 상의 유지관리 방법 준수 여부를 증명할 경우 수질오염층량제에서 별도 모니터링 없이 작감량 인정
 - 다양한 기술요소 조합에 의한 LID/GSI의 설계에 대한 성능인증제도 마련 및 모니터링 체계 수립 필요(※ 참고자료 1-3-4: LID/GSI 설계와 평가)
- 전문기관 내에 LID/GSI 성능검사센터 설치 및 운영

저영향개발기법/그린인프라 유지관리 및 사후 모니터링 의무제
- LID/GSI의 유지관리를 지자체에게 의무화83)하고, 전문적으로 유지관리 하는 위탁제도 신설하여 시설의 유지관리 내실화 방안 마련
- 환경부가 대행업의 자격요건 규정, 전문인력육성을 위한 교육 및 훈련 프로그램 도입, 대행업의 관리·감독 수행
- LID/GSI 적용된 공공시설이나 시범단지의 비점오염 및 우수 유출량 저감 효과, 토양·지하수환경 개선효과를 조사하여 효과성 분석·검증을 주기적으로 의무화

83) 미국 Chesapeake Bay의 경우 TMDL의 시행 대상인 각 지자체에게 LID/GSI 유지관리의 주체로 지정, 강제적 유지관리 하도록 의무화
투수면 확대 및 지역별 관리를 위한 제도 마련

신규도시 설계 미계획 수립시 저영향개발 기법을 적용하여 신도시 조성 모범사례 창출 및 확대
- 불투수면의 증가를 초래하는 토지개발 사업은 사업계획 단계에서 환경영향 평가 협의를 강화하여 투수면 확보
 - 신규 개발사업 환경영향평가시 개발지역 전체 물순환을 원활히 하기 위한 물순환 유지방안을 마련토록 협의의견 제시
- 신규 개발사업 추진시 적용할 수 있는 저영향개발 기준 및 ‘신도시 저영향 개발 설계 가이드라인’ 마련하고, 도입된 시설에 대해 ‘LID 유지관리 매뉴얼’ 작성
 - 공공용지는 설계에 직접 반영, 민간용지는 지구단위계획을 통해 반영 유도
 - 도시 설계 단계부터 LID기법을 반영하기 위해 신규 개발 및 재개발 수요
 - 공공기관 청사 신축시 LID 기법을 우선 적용하도록 녹색건축물 인증 제도 개선

지역별 불투수면적 기준제도를 운영하여 기존 시설 및 개발사업에 적용
- 빗물 유출율 및 침투율 등 도시 물순환 상태를 평가하여 우선관리도시를 선정하고, 도시별 물순환 관리목표 설정
 - 지역 특성을 반영하여 지자체별 불투수면적 기준을 도입함으로써 자체적으로 물순환 건전성을 제고할 수 있는 기반을 확보
 - 지자체 내 전지역을 대상으로 하는 지역별 불투수면적 기준 마련
 - 불투수면적률이 25%를 초과하는 도시지역 우선 검토
- 우선관리도시와 물순환개선 업무협약을 체결하고, 분산형 빗물유출저감시설 설치 등 물순환 선도도시(‘촉촉한 도시’) 선정

84) 오목형 화단·녹지 조성, 일정 비율 투수포장, 생태면적률 10% 이상(자연국 협업)
85) (주택단지) 단지내 빗물정원 설치, 옥상 녹화 등, (도로) 가로수와 침투기능을 겸한 나무여과상자, 식생수로, 침투구 설치, (상업지역) 식물재배화분, 투수 보도블록, 옥상녹화-식생체류지 등
• 환경부는 물순환 건전성 평가 및 관리목표 설정, LID 시설설치 국고지원, 지자체는 물순환 조례 제정, 관리계획 수립, LID 시설 설치등 역할분담

(통합지원) 물순환 목표달성 지자체에 투수 면적 확대를 위한 국고보조사업 우선 지원 등 인센티브 제공 방안 검토

- 비점저감시설-생태하천 복원사업 등 수질개선사업 국고보조율 상향 지원 (50%→70%), 상-하수도설치 국고보조 우선 지원 등

[그림 1-3-6] 촉촉한 도시 개념도

☐ 하수도 요금제를 활용한 경제적 유인책 도입

- 장기적으로 하수도체계에 우수(빗물) 요금제 도입

☐ 개발자에게 불투수면적 증가로 발생하는 강우유출수 처리비용을 요금으로 부과, 원인자가 강우유출량감소를 위해 노력하면 이를 감면하는 제도

86) 이 비용에는 개발사업에 의한 불투수면 증가로 발생하는 유휴량 증가에 대비한 하수관계 확장비용과 유출수의 오염도 증가에 따른 비점오염저감시설 설치-운영비용과 하수처리장 간이처리비용 등 유출수의 양 및 질(오염도) 상승에 따른 관리비용이 반영되어야 한다. (김호정, 2014)
제 2차 물환경관리기 본계획 후속

제 2부

5대 핵심전략별 주요과제

76

MINISTRY OF ENVIRONMENT

지로: Establishing a Stormwater Utility in Florida (FSA, 2003)

〈그림 1-3-7〉 강우빈도에 따른 민간과 공공의 부담

- 강우유출수 요금제는 도시 우수와 비점오염원 관리를 위한 재원이면서, 요금할인을 받기 위해 토지소유·관리자가 저영향개발기법 및 그린인프라를 적용하도록 유도 가능

다. 향후 추진 일정

- 한국형 저영향개발기법 개발·보급 및 유지관리 의무제도 확립
 - 한국형 저영향개발기법 개발·보급(‘16∼’20)
 - 저영향개발기법 성능검사제도 도입 및 센터설립(‘18∼’19)
 * 의무적 성능검사제도 시행(‘20∼)
 * 유지관리 대행업 제도 신설 및 운영(‘17∼’19)
 - 저영향개발기법 효과성 조사 및 분석(‘18, 사후 모니터링 의무제 도입(‘19∼)

- 투수면 확대 및 지역별 확대를 위한 제도 마련(‘16∼’20)
 - 불투수면적 기준 및 LID 가이드라인 마련
 - 투수면적률 달성을 위한 인센티브 제도 마련
 - 강우유출수 요금제 시행 시 LID/GSI 적용 시 요금감면 인정

87) 낮은 강도의 강우에 대한 유출수 관리는 토지 소유자/이용자가 1차 책임, 높은 강도의 강우에 대한 책임은 공동체 있음
전국 불투수면적률 조사 결과(2013년) 요약

○ 시도별 불투수면적률 현황

<table>
<thead>
<tr>
<th>No.</th>
<th>지역</th>
<th>불투수면(%)</th>
<th>투수면(%)</th>
<th>수계(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>서울특별시</td>
<td>54.39</td>
<td>37.66</td>
<td>7.95</td>
</tr>
<tr>
<td>2</td>
<td>부산광역시</td>
<td>30.25</td>
<td>58.94</td>
<td>10.81</td>
</tr>
<tr>
<td>3</td>
<td>광주광역시</td>
<td>27.03</td>
<td>67.48</td>
<td>5.49</td>
</tr>
<tr>
<td>4</td>
<td>대구광역시</td>
<td>23.28</td>
<td>70.82</td>
<td>5.90</td>
</tr>
<tr>
<td>5</td>
<td>인천광역시</td>
<td>22.30</td>
<td>75.43</td>
<td>2.27</td>
</tr>
<tr>
<td>6</td>
<td>대전광역시</td>
<td>22.00</td>
<td>71.75</td>
<td>6.25</td>
</tr>
<tr>
<td>7</td>
<td>울산광역시</td>
<td>17.22</td>
<td>79.15</td>
<td>3.63</td>
</tr>
<tr>
<td>8</td>
<td>경기도</td>
<td>13.73</td>
<td>82.62</td>
<td>3.65</td>
</tr>
<tr>
<td>9</td>
<td>경기 부천시</td>
<td>12.41</td>
<td>81.52</td>
<td>6.07</td>
</tr>
<tr>
<td>10</td>
<td>경기 수원시</td>
<td>8.74</td>
<td>90.18</td>
<td>1.08</td>
</tr>
<tr>
<td>11</td>
<td>충청남도</td>
<td>8.26</td>
<td>86.85</td>
<td>4.89</td>
</tr>
<tr>
<td>12</td>
<td>경상남도</td>
<td>7.77</td>
<td>87.89</td>
<td>4.34</td>
</tr>
<tr>
<td>13</td>
<td>전라북도</td>
<td>6.99</td>
<td>88.11</td>
<td>4.90</td>
</tr>
<tr>
<td>14</td>
<td>전라남도</td>
<td>6.78</td>
<td>88.56</td>
<td>4.66</td>
</tr>
<tr>
<td>15</td>
<td>경상북도</td>
<td>6.57</td>
<td>88.96</td>
<td>4.47</td>
</tr>
<tr>
<td>16</td>
<td>강원도</td>
<td>5.06</td>
<td>91.14</td>
<td>3.80</td>
</tr>
<tr>
<td>17</td>
<td>강원도</td>
<td>3.18</td>
<td>93.73</td>
<td>3.09</td>
</tr>
</tbody>
</table>

- 불투수면적률이 높은 지자체

<table>
<thead>
<tr>
<th>No.</th>
<th>지역</th>
<th>불투수면(%)</th>
<th>투수면(%)</th>
<th>수계(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>경기 부천시</td>
<td>61.71</td>
<td>37.18</td>
<td>1.11</td>
</tr>
<tr>
<td>2</td>
<td>서울특별시</td>
<td>54.37</td>
<td>37.68</td>
<td>7.95</td>
</tr>
<tr>
<td>3</td>
<td>경기 수원시</td>
<td>49.28</td>
<td>47.42</td>
<td>3.30</td>
</tr>
<tr>
<td>4</td>
<td>전남 목포시</td>
<td>46.30</td>
<td>49.27</td>
<td>4.43</td>
</tr>
<tr>
<td>5</td>
<td>경기 광명시</td>
<td>43.85</td>
<td>53.78</td>
<td>2.37</td>
</tr>
<tr>
<td>6</td>
<td>경기 안산시</td>
<td>39.67</td>
<td>57.18</td>
<td>3.15</td>
</tr>
<tr>
<td>7</td>
<td>경기 안양시</td>
<td>39.47</td>
<td>57.32</td>
<td>3.21</td>
</tr>
<tr>
<td>8</td>
<td>경기 군포시</td>
<td>36.99</td>
<td>60.69</td>
<td>2.32</td>
</tr>
<tr>
<td>9</td>
<td>경기 시흥시</td>
<td>36.45</td>
<td>61.42</td>
<td>2.13</td>
</tr>
<tr>
<td>10</td>
<td>경기 안산시</td>
<td>36.32</td>
<td>61.29</td>
<td>2.39</td>
</tr>
</tbody>
</table>
- 불투수면적률이 낮은 지자체

<table>
<thead>
<tr>
<th>No.</th>
<th>지역</th>
<th>불투수면(%)</th>
<th>투수면(%)</th>
<th>수계(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>강원 인제군</td>
<td>1.46</td>
<td>95.84</td>
<td>2.70</td>
</tr>
<tr>
<td>2</td>
<td>강원 화천군</td>
<td>1.71</td>
<td>93.80</td>
<td>4.49</td>
</tr>
<tr>
<td>3</td>
<td>강원 정선군</td>
<td>1.80</td>
<td>95.44</td>
<td>2.76</td>
</tr>
<tr>
<td>4</td>
<td>경북 영양군</td>
<td>1.82</td>
<td>95.77</td>
<td>2.41</td>
</tr>
<tr>
<td>5</td>
<td>경북 창송군</td>
<td>1.94</td>
<td>95.21</td>
<td>2.85</td>
</tr>
<tr>
<td>6</td>
<td>강원 양구군</td>
<td>1.98</td>
<td>94.48</td>
<td>3.54</td>
</tr>
<tr>
<td>7</td>
<td>강원 영월군</td>
<td>2.24</td>
<td>94.46</td>
<td>3.30</td>
</tr>
<tr>
<td>8</td>
<td>강원 평창군</td>
<td>2.27</td>
<td>96.33</td>
<td>1.40</td>
</tr>
<tr>
<td>9</td>
<td>강원 홍천군</td>
<td>2.28</td>
<td>94.86</td>
<td>2.86</td>
</tr>
<tr>
<td>10</td>
<td>강원 철원군</td>
<td>2.40</td>
<td>95.53</td>
<td>2.07</td>
</tr>
</tbody>
</table>

○ 유역별 불투수면적률 현황
- 중권역별 상위 유역

<table>
<thead>
<tr>
<th>No.</th>
<th>중권역</th>
<th>불투수면(%)</th>
<th>투수면(%)</th>
<th>수계(%)</th>
<th>해당 지자체</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>한강서울</td>
<td>35.62</td>
<td>59.24</td>
<td>5.14</td>
<td>서울시, 남양주시, 성남시, 하남시</td>
</tr>
<tr>
<td>2</td>
<td>수영강</td>
<td>31.79</td>
<td>66.40</td>
<td>1.81</td>
<td>부산시</td>
</tr>
<tr>
<td>3</td>
<td>한강고양</td>
<td>26.70</td>
<td>64.69</td>
<td>8.61</td>
<td>고양시, 양주시, 파주시, 김포시</td>
</tr>
<tr>
<td>4</td>
<td>회야강</td>
<td>24.20</td>
<td>72.38</td>
<td>3.42</td>
<td>울산시, 양산시</td>
</tr>
<tr>
<td>5</td>
<td>안성천</td>
<td>20.70</td>
<td>74.83</td>
<td>4.47</td>
<td>평택시, 안성시, 화성시, 용인시, 천안시, 아산시</td>
</tr>
<tr>
<td>6</td>
<td>한강서해</td>
<td>20.57</td>
<td>77.32</td>
<td>2.11</td>
<td>인천시, 서초구, 김포시</td>
</tr>
<tr>
<td>7</td>
<td>영산강상류</td>
<td>19.22</td>
<td>76.42</td>
<td>4.36</td>
<td>담양군, 광주광역시</td>
</tr>
<tr>
<td>8</td>
<td>갑천</td>
<td>18.61</td>
<td>77.99</td>
<td>3.40</td>
<td>대전시, 논산시, 금산군</td>
</tr>
<tr>
<td>9</td>
<td>청령합천보</td>
<td>18.23</td>
<td>73.06</td>
<td>8.71</td>
<td>대구시, 고령군, 경산군</td>
</tr>
<tr>
<td>10</td>
<td>시화호</td>
<td>17.54</td>
<td>80.85</td>
<td>1.61</td>
<td>안산시, 평택시, 화성시</td>
</tr>
</tbody>
</table>

- 불투수면적률 25% 초과 소권역(51개)

<table>
<thead>
<tr>
<th>No.</th>
<th>소 권역</th>
<th>불투수면(%)</th>
<th>투수면(%)</th>
<th>수계(%)</th>
<th>해당 지자체</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>청계천</td>
<td>71.49</td>
<td>26.68</td>
<td>1.83</td>
<td>서울시</td>
</tr>
<tr>
<td>2</td>
<td>공촌천</td>
<td>67.26</td>
<td>30.56</td>
<td>2.18</td>
<td>인천시</td>
</tr>
<tr>
<td>3</td>
<td>안양천하류</td>
<td>66.47</td>
<td>30.74</td>
<td>2.79</td>
<td>서울시</td>
</tr>
<tr>
<td>4</td>
<td>홍제천하류</td>
<td>61.54</td>
<td>15.50</td>
<td>22.96</td>
<td>서울시</td>
</tr>
<tr>
<td>5</td>
<td>진천천</td>
<td>60.96</td>
<td>37.72</td>
<td>1.32</td>
<td>대구시</td>
</tr>
<tr>
<td>6</td>
<td>홍제천</td>
<td>59.69</td>
<td>38.91</td>
<td>1.40</td>
<td>서울시</td>
</tr>
<tr>
<td>7</td>
<td>동천</td>
<td>59.64</td>
<td>39.94</td>
<td>0.42</td>
<td>부산시</td>
</tr>
<tr>
<td>8</td>
<td>부산천</td>
<td>59.54</td>
<td>40.29</td>
<td>0.17</td>
<td>부산시</td>
</tr>
<tr>
<td>9</td>
<td>한강대교수위표</td>
<td>58.59</td>
<td>27.87</td>
<td>13.54</td>
<td>서울시</td>
</tr>
<tr>
<td>10</td>
<td>화정천</td>
<td>54.64</td>
<td>43.50</td>
<td>1.86</td>
<td>시흥시, 안산시</td>
</tr>
<tr>
<td>11</td>
<td>대화강</td>
<td>52.29</td>
<td>41.26</td>
<td>6.45</td>
<td>울산시</td>
</tr>
<tr>
<td>No.</td>
<td>소권역</td>
<td>불투수면(%)</td>
<td>투수면(%)</td>
<td>수계(%)</td>
<td>해당 지자체</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>12</td>
<td>굴포천</td>
<td>52.02</td>
<td>46.32</td>
<td>1.66</td>
<td>서울시, 인천시, 부천시</td>
</tr>
<tr>
<td>13</td>
<td>신천하류</td>
<td>51.99</td>
<td>45.14</td>
<td>2.87</td>
<td>대구시</td>
</tr>
<tr>
<td>14</td>
<td>유등천하류</td>
<td>51.20</td>
<td>44.12</td>
<td>4.68</td>
<td>대전시</td>
</tr>
<tr>
<td>15</td>
<td>옥서면</td>
<td>49.24</td>
<td>42.60</td>
<td>8.16</td>
<td>군산시</td>
</tr>
<tr>
<td>16</td>
<td>중량천하류</td>
<td>46.99</td>
<td>50.00</td>
<td>3.01</td>
<td>서울시</td>
</tr>
<tr>
<td>17</td>
<td>금호강하류</td>
<td>46.95</td>
<td>43.65</td>
<td>9.40</td>
<td>대구시</td>
</tr>
<tr>
<td>18</td>
<td>광주천</td>
<td>46.92</td>
<td>51.43</td>
<td>1.65</td>
<td>광주광역시</td>
</tr>
<tr>
<td>19</td>
<td>중량천합류전</td>
<td>46.76</td>
<td>37.07</td>
<td>16.17</td>
<td>서부시, 구리시, 하남시</td>
</tr>
<tr>
<td>20</td>
<td>황구지천하류</td>
<td>46.42</td>
<td>50.20</td>
<td>3.38</td>
<td>수원시</td>
</tr>
<tr>
<td>21</td>
<td>수영강</td>
<td>45.66</td>
<td>52.57</td>
<td>1.77</td>
<td>부산시</td>
</tr>
<tr>
<td>22</td>
<td>청량천</td>
<td>43.77</td>
<td>54.07</td>
<td>2.16</td>
<td>울산시</td>
</tr>
<tr>
<td>23</td>
<td>천안천</td>
<td>43.02</td>
<td>54.68</td>
<td>2.30</td>
<td>천안시</td>
</tr>
<tr>
<td>24</td>
<td>안양천중류</td>
<td>42.43</td>
<td>54.57</td>
<td>3.00</td>
<td>서울시, 광명시, 안양시, 부천시, 시흥시</td>
</tr>
<tr>
<td>25</td>
<td>성왕천</td>
<td>41.91</td>
<td>57.19</td>
<td>0.90</td>
<td>광양시</td>
</tr>
<tr>
<td>26</td>
<td>요산천</td>
<td>40.99</td>
<td>55.60</td>
<td>3.41</td>
<td>화성시, 오산시</td>
</tr>
<tr>
<td>27</td>
<td>안양천상류</td>
<td>39.24</td>
<td>58.92</td>
<td>1.84</td>
<td>군포시, 의왕시, 안양시</td>
</tr>
<tr>
<td>28</td>
<td>행주단교수위표</td>
<td>38.93</td>
<td>36.33</td>
<td>24.74</td>
<td>서울시</td>
</tr>
<tr>
<td>29</td>
<td>경포천</td>
<td>38.66</td>
<td>59.74</td>
<td>1.60</td>
<td>군산시</td>
</tr>
<tr>
<td>30</td>
<td>낭천</td>
<td>38.51</td>
<td>58.97</td>
<td>2.52</td>
<td>창원시</td>
</tr>
<tr>
<td>31</td>
<td>전등천하류</td>
<td>37.61</td>
<td>58.22</td>
<td>4.17</td>
<td>전주시</td>
</tr>
<tr>
<td>32</td>
<td>기호댐</td>
<td>37.28</td>
<td>57.68</td>
<td>5.04</td>
<td>용인시</td>
</tr>
<tr>
<td>33</td>
<td>탄천하류</td>
<td>36.55</td>
<td>59.69</td>
<td>3.76</td>
<td>서울시, 과천시</td>
</tr>
<tr>
<td>34</td>
<td>계량천합류후</td>
<td>36.43</td>
<td>50.82</td>
<td>12.75</td>
<td>고양시, 김포시, 인천시</td>
</tr>
<tr>
<td>35</td>
<td>낙동강하구언</td>
<td>35.17</td>
<td>32.34</td>
<td>32.49</td>
<td>부산시</td>
</tr>
<tr>
<td>36</td>
<td>진위천합류전</td>
<td>34.60</td>
<td>61.62</td>
<td>3.78</td>
<td>평택시, 안성시</td>
</tr>
<tr>
<td>37</td>
<td>장수천</td>
<td>32.36</td>
<td>65.16</td>
<td>2.48</td>
<td>서대문시, 인천시</td>
</tr>
<tr>
<td>38</td>
<td>탄천상류</td>
<td>31.96</td>
<td>65.36</td>
<td>2.68</td>
<td>용인시, 성남시</td>
</tr>
<tr>
<td>39</td>
<td>성남수위표</td>
<td>31.48</td>
<td>66.06</td>
<td>2.46</td>
<td>성남시</td>
</tr>
<tr>
<td>40</td>
<td>공지천</td>
<td>31.01</td>
<td>67.07</td>
<td>1.92</td>
<td>춘천시</td>
</tr>
<tr>
<td>41</td>
<td>갑천하류</td>
<td>30.53</td>
<td>64.13</td>
<td>5.34</td>
<td>대전시</td>
</tr>
<tr>
<td>42</td>
<td>청남천</td>
<td>30.05</td>
<td>67.47</td>
<td>2.48</td>
<td>양주시</td>
</tr>
<tr>
<td>43</td>
<td>황령강합류전</td>
<td>29.61</td>
<td>65.19</td>
<td>5.20</td>
<td>광주광역시, 장성군</td>
</tr>
<tr>
<td>44</td>
<td>대전천</td>
<td>28.91</td>
<td>69.25</td>
<td>1.84</td>
<td>대전시</td>
</tr>
<tr>
<td>45</td>
<td>석화수위표</td>
<td>28.53</td>
<td>66.11</td>
<td>5.36</td>
<td>청주시, 청원군</td>
</tr>
<tr>
<td>46</td>
<td>양산천하류</td>
<td>27.79</td>
<td>68.92</td>
<td>3.29</td>
<td>양산시</td>
</tr>
<tr>
<td>47</td>
<td>금호강중류</td>
<td>27.76</td>
<td>66.79</td>
<td>5.45</td>
<td>대구시</td>
</tr>
<tr>
<td>48</td>
<td>평택수위표</td>
<td>25.95</td>
<td>69.32</td>
<td>4.73</td>
<td>안성시, 평택시</td>
</tr>
<tr>
<td>49</td>
<td>평생강하류</td>
<td>25.91</td>
<td>68.57</td>
<td>5.52</td>
<td>포항시, 경주시</td>
</tr>
<tr>
<td>50</td>
<td>조안강</td>
<td>25.56</td>
<td>65.56</td>
<td>8.88</td>
<td>임해시</td>
</tr>
<tr>
<td>51</td>
<td>연등천</td>
<td>25.05</td>
<td>74.25</td>
<td>0.70</td>
<td>여수시</td>
</tr>
</tbody>
</table>
_COLOR

참고자료 1-3-2

- 불투수면적률 변화에 따른 유역 건강성
 - 불투수면적률과 수질 간의 관계
 - 조종천, 경안천, 탄천, 중랑천, 안양천: 유역 내 불투수면 비율과 수질오염 항목 간에 대체로
 정(+)의 상관관계가 나타남

< 국내 유역 불투수면 비율과 수질 변화 >

<table>
<thead>
<tr>
<th>불투수층비율 (%)</th>
<th>분변 대장균군 (cfu/100mL)</th>
<th>최고 수온 (℃)</th>
<th>최저 DO (mg/L)</th>
<th>최대 pH</th>
<th>탁도 (NTU)</th>
<th>T-P (㎍/L)</th>
<th>T-N (㎍/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10~20%</td>
<td>14</td>
<td>126</td>
<td>15.6</td>
<td>7.5</td>
<td>8.1</td>
<td>3.8</td>
<td>49</td>
</tr>
<tr>
<td>20~30%</td>
<td>22</td>
<td>426</td>
<td>16.7</td>
<td>7.3</td>
<td>8.3</td>
<td>4.5</td>
<td>54</td>
</tr>
<tr>
<td>30~40%</td>
<td>32</td>
<td>328</td>
<td>18.2</td>
<td>5.0</td>
<td>8.6</td>
<td>3.3</td>
<td>61</td>
</tr>
<tr>
<td>40~50%</td>
<td>45</td>
<td>660</td>
<td>18.7</td>
<td>6.2</td>
<td>8.8</td>
<td>4.1</td>
<td>78</td>
</tr>
</tbody>
</table>

- 중국 심천시: 불투수면적률이 1% 증가할 때마다 용존산소(DO) 농도는 감소하고 그 외 모든
 수질오염항목의 농도는 증가

불투수면적률에 따른 그룹별 수질항목 중앙값 비교

- 미국 워싱턴주 레드먼드시: 불투수면적률이 증가할수록 수질이 나빠지는 경향을 보이며, 특히
 불투수면적률이 20% 이상으로 나타난 집수구역에서 수질악화 현상이 두드러짐
• 특히, 불투수면적률이 30%를 초과하는 경우 DO 감소율 및 오염 증가율이 크게 높아짐

○ 불투수면적률과 수생태계 간의 관계

- 미국 메릴랜드주: 불투수면 비율이 4% 초과시 자생 민물송어 멸종(하천의 수온 상승과 침전 물 증가가 원인)

(불투수면적률과 민물송어 밀도 간 관계)

- 미국 조지아주 에토와강: 5종의 자생어류 중 4개 종에서 불투수면적률과 어류 출현양상이 음의 상관관계 나타남

• 불투수면적률이 하천 어류 출현의 중요한 결정요소로 작용

- 미국 코네티컷주: 1985∼2002년 유역 내 불투수면적률과 저서성 대형무척추동물 개체수의 상관관계 분석 결과, 불투수면이 증가할수록 수생생물의 개체수 감소

(불투수면적률과 수생생물 개체수의 상관관계)

자료: Bellucci(2007). “Stormwater and Aquatic Life: Making the Connection between impervious cover and aquatic life impairments for TMDL Development in Conneticut Streams”
제2차 물환경관리 기 본계획
부록
참고자료 1-3-3

- 저영향개발(LID)과 그린빗물인프라(GSI)

 ○ 저영향개발(LID)
 - 저영향개발(LID ; Low Impact Development)은 자연의 물순환에 미치는 영향을 최소로 하여 개발하는 것
 - 국내외에서 다양한 정의가 제시되고 있는데, 개발로 인해 변화되는 수문특성을 개발 전과 최대한 유사하도록 하는 것이 공통된 사항
 ○ 그린빗물인프라(Green Stormwater Infrastructure, GSI)
 - 도시지역 내 녹색공간과 생태공간의 확대를 통해 빗물의 침투, 저류, 증발산, 재이용을 증가시켜 빗물을 감소시키는 인프라
 - 저영향개발은 주로 신규개발과 재개발에 적용되는 개발방식이며, 그린빗물인프라는 기존 개발 지역의 환경인프라를 개량하는데 초점이 맞춰진 개념
 ○ 저영향개발과 그린.$.infra의 효과
 - 저류, 침투, 여과, 증발산 등의 기작을 통해 강우유출량 및 오염물질 유출량을 저감하며, 도시 물순환 회복, 생태사시화 제공, 열섬현상 완화, 도시경관 개선, 에너지 절약 등 편익 제공
 - 강우유출량 저감효과: 0.25인치(6.35mm) 이하의 초기강우에서 유출계수 0.1에서 0.04로 약 60% 감소(미국지질조사국, 2010)
 - 오염물질 저감효과: 총부유물질 84%, 총질소 63%, 총인 63%, 중금속 76~83%(미국환경청, 2012)
 ○ 저영향개발 기술요소 및 그린빗물인프라

<table>
<thead>
<tr>
<th>명칭</th>
<th>기술개요</th>
<th>모식도</th>
</tr>
</thead>
<tbody>
<tr>
<td>식생체류지 (Bioretention)</td>
<td>토양에 의한 여과, 생화학적 반응, 침투 및 저류 등의 방법으로 강우유출수를 조절하는 식생으로 덮인 소규모의 저류시설</td>
<td></td>
</tr>
<tr>
<td>육상녹화 (Greenroof)</td>
<td>강우유출수를 옥상에서 차집하여, 여과, 증발, 저류량으로써 도시화된 지역의 유출을 저감하는 기술효과. 도심 내 열섬해소효과, 휴게 공간 제공 등 부가적인 편익 제공</td>
<td></td>
</tr>
<tr>
<td>명칭</td>
<td>기술개요</td>
<td>모식도</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>나무여과장치 (Treeboxfilter)</td>
<td>가로수 하부에 여과부가 포함된 구조물(콘크리트 박스)을 매립하여 강우시 유출되는 우수를 유입시킨 후 여과, 침투 유도</td>
<td></td>
</tr>
<tr>
<td>식물재배화분 (Planter box)</td>
<td>도심 녹지공간이나 기존 수목이 식재된 화분 등의 공간을 활용하여 우수를 저류, 침류 할 수 있는 시설물로 지피식물, 관목류 등의 식재를 통해 녹지기능과 우수관리기능을 확보</td>
<td></td>
</tr>
<tr>
<td>식생수로 (Bioswale)</td>
<td>배수 구조물로서 토양에 의한 여과, 생화학적 반응, 침투 및 저류 등의 방법으로 강우유출수를 조절하는 식생으로 덮인 수로</td>
<td></td>
</tr>
<tr>
<td>식생여과대 (Bioslope)</td>
<td>자갈 및 식생재료를 이용한 토양으로 구성되며 강우유출수를 감소시키고 사면안정과 함께 여과기능을 수행, 수질개선 및 도심 내 녹지공간 기능</td>
<td></td>
</tr>
<tr>
<td>침투도랑 (Infiltration trench)</td>
<td>자갈, 쇠파름 등 공극이 많은 재료로 채워진 형태의 도랑으로 강우시 유출수를 담아두고 토양으로 침투시키는 기술요소</td>
<td></td>
</tr>
<tr>
<td>침투통 (Dry well)</td>
<td>자갈 또는 돌 등으로 채워져 있고 건축물의 홍수대 비행을 예방하고, 불투수면의 유출수를 유입할 수 있도록 설치되어 토양으로 침투시키는 기술요소</td>
<td></td>
</tr>
<tr>
<td>투수성 포장 (Porous pavement)</td>
<td>강우유출수와 오염물질 저감을 위해 다공성 아스팔트·콘크리트·투수블록 등과 쇠파름의 공극을 통과하여 강우유출수를 토양에 침투시키고 오염물질 저감하는 기술요소</td>
<td></td>
</tr>
<tr>
<td>명칭</td>
<td>기술개요</td>
<td>모식도</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>모래여과장치 (Sandfilter)</td>
<td>불투수면의 강우유출수를 모래여과를 통해 유출수내 혐정물 및 부유물질을 제거하여 수질을 개선시키는 기술요소</td>
<td></td>
</tr>
<tr>
<td>빗물통 (Rain barrel)</td>
<td>지붕 유출수를 이용하기 위해 설치되는 저류시설로 소규모의 강우에 대하여 유출량 저감과 대체용수 확보. 집수된 물은 조경용수, 화장실 세척수 등으로 사용 가능</td>
<td></td>
</tr>
</tbody>
</table>

참고자료 1-3-4

◆ LID/GSI의 소규모 분산형 다양한 설계 예
 - LID/GSI는 다양한 기술요소의 조합을 통해 다양한 강우유출수 및 비점오염 저감 효과를 볼 수 있음
 - 그러므로, 다양한 기술요소의 조합 설계에 대한 비점오염 및 강우유출 성능이나 적절한 모니터링 체계를 도입한 성능점증에 대한 제도수립이 필요(모형 및 시범사업 결과 이전 등 고려)

1-4. 대체수자원의 확보 및 공급

가. 현황 및 문제점

- 기후변화 등 물안보 위협 환경에서 대체수자원의 확보 및 공급에 대한 중요 증가
 - 한국의 1인당 강수량은 세계 평균의 1/8에 불과하며, 연강수량의 2/3이 홍수기에 집중되어 물관리 여건이 불리\(^90\)
 - 하천댐 등 지표수에 상수도 거의 대부분을 의존(98.5%)하며, 하천 취수율이 36%로 물 스트레스가 높은 수준\(^91\),\(^92\)

- 하·폐수처리장 등 경기초시설에서 처리된 방류수는 수질 및 수량 측면에서 매우 안정적인 대체수자원으로서 기능 가능
 - 맑게 처리된 방류수는 갈수기간 중 상류에서 오염된 하천의 흐석수 역할을 할 수 있고 양질의 공업용수로 사용가능하며 도시화로 갈수기간 동안 하천 생태유량으로 공급이 가능함
 - 하·폐수 처리수를 대체수자원으로 확보하는 것은 궁극적으로 수돗물 사용량과 댐 건설 수요를 줄여 사회 전체의 비용 감소시키는 효과

- 하수처리수 재이용 시범사업 시행 등으로 하수처리수 재이용률은 지속 증가(1.3%ʻ02\(^93\) → 12.6%ʻ13\(^94\))
 - 2013년 하수처리량 7,187백만톤의 약 12.6%인 907백만톤 재이용하였으나 장내용수가 50.5% 차지
 - 실질적인 대체수자원의 역할을 수행할 수 있도록 장외재이용을 보다 촉진 필요

\(^{90}\) 환경부, 2011, 물 재이용 기본계획(2011～2020)
\(^{91}\) 환경부, 2014, 2013 상수도통계
\(^{92}\) 국토해양부, 2011, 수자원기초조사계획(2011～2020)
\(^{93}\) 워터케어, 2014, 한국 물의 재이용 현황 및 정책 방향
\(^{94}\) 환경부, 2014, 2013 상수도통계
제 2차 물환경관리 기본계획 후속

제 2부
5대 행정성업별 주요과제

자료 : 환경부, 2014, 각년도 하수도통계

자료 : 환경부, 2014, 2013 하수도통계 참고

2010년 6월에는 「물의 재이용 촉진 및 지원에 관한 법률」을 제정해 일정 규모 이상의 건물에 '빗물이용시설'을 설치 확대
- 2013년 965개소가 설치되어 연간 944만㎥의 빗물 이용
제2차 물환경관리 기본계획
부록

자료 : 워터저널, 2014, 한국 물의 재이용 현황 및 정책 방향

〈그림 1-4-3〉빗물이용시설 추이

〈표 1-4-1〉빗물이용 시설 현황

<table>
<thead>
<tr>
<th>구분</th>
<th>시설개소</th>
<th>집수면적 (㎡)</th>
<th>저류조 용량 (㎡)</th>
<th>연간사용량 (㎡/년)</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>965</td>
<td>37,178,546</td>
<td>4,221,223</td>
<td>9,204,372</td>
</tr>
<tr>
<td>서울특별시</td>
<td>456</td>
<td>695,114</td>
<td>137,491</td>
<td>154,474</td>
</tr>
<tr>
<td>부산광역시</td>
<td>6</td>
<td>126,501</td>
<td>6,697</td>
<td>75,630</td>
</tr>
<tr>
<td>대구광역시</td>
<td>32</td>
<td>97,151</td>
<td>6,666</td>
<td>4,029</td>
</tr>
<tr>
<td>인천광역시</td>
<td>5</td>
<td>34,360</td>
<td>1,678</td>
<td>16,160</td>
</tr>
<tr>
<td>광주광역시</td>
<td>17</td>
<td>18,222</td>
<td>994</td>
<td>3,319</td>
</tr>
<tr>
<td>대전광역시</td>
<td>10</td>
<td>29,463</td>
<td>1,002</td>
<td>1,517</td>
</tr>
<tr>
<td>울산광역시</td>
<td>1</td>
<td>7,681</td>
<td>448</td>
<td>3,720</td>
</tr>
<tr>
<td>경기도</td>
<td>240</td>
<td>1,322,527</td>
<td>56,858</td>
<td>383,180</td>
</tr>
<tr>
<td>강원도</td>
<td>3</td>
<td>18,214</td>
<td>952</td>
<td>2,100</td>
</tr>
<tr>
<td>충청북도</td>
<td>3</td>
<td>33,988</td>
<td>462</td>
<td>1,388</td>
</tr>
<tr>
<td>충청남도</td>
<td>24</td>
<td>37,892</td>
<td>12,887</td>
<td>166,934</td>
</tr>
<tr>
<td>전라북도</td>
<td>38</td>
<td>37,001</td>
<td>4,301</td>
<td>300</td>
</tr>
<tr>
<td>전라남도</td>
<td>5</td>
<td>15,210</td>
<td>770</td>
<td>4,500</td>
</tr>
<tr>
<td>경상북도</td>
<td>3</td>
<td>9,568</td>
<td>712</td>
<td>108,436</td>
</tr>
<tr>
<td>경상남도</td>
<td>86</td>
<td>226,728</td>
<td>5,727</td>
<td>54,047</td>
</tr>
<tr>
<td>제주도</td>
<td>36</td>
<td>34,468,954</td>
<td>3,983,579</td>
<td>8,224,639</td>
</tr>
</tbody>
</table>

자료 : 환경부, 2014, 2013 하수도통계
나. 주요대책

◆ 하·폐수 처리수 재이용 활성화
 ◆ 빗물이용 확대 및 활용

- 하·폐수 처리수 재이용 활성화
 - 대규모 하수 발생 처리장 중심으로 하수처리수 재이용 활성화
 - 공업용수 중심의 재이용 고급화
 - 생활 잡배수 등 오수의 적정 처리 및 재이용 지속 추진

- 빗물이용 확대 및 활용
 - 도심 우수 저류시설 확대 설치
 - 공공기관, 공영주차장, 학교 등 집수면적이 넓은 공간이나 시설에 우수 저류 및 활용 시스템 적용
 - 빗물이용시설 관리체계 개선
 - 빗물이용시설 유량계 설치 의무화 등

다. 향후 추진 일정

- 하·폐수 처리수 재이용 활성화
 - 공업용수 위주의 신규사업 발굴·추진으로 재이용 가치 극대화(계속)
 - ‘수도정비기본계획’ 수립 시 하수 처리수 재이용에 의한 용수 공급을 반영하는 방안 검토(‘19)
 - 하수처리수 재이용사업 지속 확대 추진(계속)

- 빗물이용 확대 및 활용
 - 빗물이용시설 관리체계 개선(‘18)
하수처리수 재이용 사례

- 외국의 경우 물부족이 매우 심각한 중동 및 북아프리카 지역의 이스라엘, 이집트, 이란, 요르단, 쿠웨이트, 리비아, 모로코, 오만, 카타르, 시리아, 아랍에미리트 등의 국가들은 80%이상 재이용
- 싱가포르, 호주, 미국 캘리포니아와 플로리다, 유럽의 스페인, 이탈리아, 독일, 등에서는 수자원의 수급의존도가 높고, 가뭄 등으로 인한 물부족 스트레스를 받고 있는 지역으로 대부분 10% 이상 하수처리수 재이용
- 하수처리수 재이용 용도는 대부분의 국가들이 농업용수로 가장 많이 사용되고 있으며, 일본, 미국의 플로리다와 캘리포니아, 호주의 경우는 도시 관개용수의 활용이 높음
- 미국의 플로리다와 캘리포니아, 유럽 및 이스라엘 국가들은 지하수 충진을 통한 간접음용수원 확보, 해수침투 및 지하수위 저하 방지 등의 목적으로도 활발히 사용

빗물 이용 사례

<table>
<thead>
<tr>
<th>국명</th>
<th>이용시설</th>
<th>집수면적(㎡)</th>
<th>저수용량(㎥)</th>
<th>이용용도</th>
</tr>
</thead>
<tbody>
<tr>
<td>일본</td>
<td>도쿄도 스미다 시청</td>
<td>5,000</td>
<td>1,000</td>
<td>화장실 용수</td>
</tr>
<tr>
<td></td>
<td>고쿠치칸 경기장</td>
<td>8,400</td>
<td>1,000</td>
<td>화장실, 냉각수, 조경용수</td>
</tr>
<tr>
<td></td>
<td>도쿄돔 구장</td>
<td>16,000</td>
<td>11,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>나고야돔 구장</td>
<td>35,000</td>
<td>2,800</td>
<td></td>
</tr>
<tr>
<td>독일</td>
<td>베크런 다임러크라이슬러 포츠담 플라츠</td>
<td>32,000</td>
<td>3,500</td>
<td>화장실, 조경용수</td>
</tr>
<tr>
<td></td>
<td>베크런 소나센터</td>
<td>4,000</td>
<td>900</td>
<td>화장실, 조경, 소방용수</td>
</tr>
<tr>
<td></td>
<td>코블렌츠 기술대학</td>
<td>5,500</td>
<td>100</td>
<td>화장실, 조경, 소방용수</td>
</tr>
<tr>
<td>대만</td>
<td>타이페이 동물원</td>
<td>100,000</td>
<td>800</td>
<td>화장실, 조경, 연못 등</td>
</tr>
</tbody>
</table>

95) 환경부, 2011, 물 재이용 기본계획(2011∼2020)
96) 국토교통부, K-water, 2014, 물과 미래
1-5. 물 수요 관리 강화

가. 현황 및 문제점

- 우리 국토의 건전한 물순환을 달성하기 위해서는 공급 측면뿐만 아니라 물 수요를 관리하는 방안도 함께 강구해야 함
 - 물 부족 문제에 대처하기 위해 2000년 3월 ‘물 절약 종합대책’ 수립을 추진하여 공급위주에서 수요관리 중심으로 정책 전환
 - 2001년 ‘수도법’을 개정하고 물 수요관리 기반 마련을 위해 ‘물 수요 관리 종합계획’ 및 ‘물 수요관리 시행계획’의 수립을 의무화

그 동안의 물 수요는 누수율 제고, 절수기 보급 등의 전통적인 방식으로 관리

항후 사회적 합의를 거친 경제적 유인책을 활용한 수요 관리 정책 필요

나. 주요대책

- 물 수요관리에 인센티브 도입
- 기존 물 수요관리 방안 지속 추진

먼저 물 수요관리에 인센티브 도입

- 물이용부담금 연동제(Up-Down제) 도입 가능성 검토 및 수립·운영
 - 물이용부담금 연동제 수립·운영시 물결약 효과와 물이용부담금의 안정적 운용을 고려한 적정한 조정 수준 산정
 - 국민들의 추가적 재정부담 고려

※ 물이용부담금 연동제 가뭄 등으로 기초수자원이 부족하거나 물수요가 급격히 증가할 경우 물이용부담금 상향 조정하고 기름이 해소되면 물이용부담금 다시 하향조정하여 가뭄 상황에서 물수요를 적정하게 관리하기 위한 방안
수량과 수질을 통합 관리할 수 있는 지표로 물발자국을 활용하여 지역·기업·제품의 물 소비량 및 오염량 저감
- 지역단위 물발자국 산정을 통해 수질을 고려한 물 이용촉진의 비효율적인 요소를 규명하고 물 재분배, 중수도·빗물이용 등 통합적 관리대책 마련
- 물 발자국이 다 지역보다 현저히 높은 핫스팟(Hot Spot)을 선정하고 집중 관리로 물발자국 줄이기 및·관협력사업 추진
- 지자체 물발자국 산정·관리 가이드라인을 마련하여 사업목표 및 국고보조 사업 지원기준 등 물관리 지표로 활용
- 물소비량 및 수질오염도가 높은 중소·중견 기업 및 제품(생수, 음료 등)의 물발자국을 시범 산정하여 물관리시스템 구축 지원

기존 물 수요관리 방안 지속 추진
- 가정과 기업에 IT기술을 활용한 스마트 절수기 보급
- 물절약 캠페인 진행

다. 향후 추진 일정
- 물 수요관리에 인센티브 도입(‘16∼’17)
- 지역·기업·제품 물발자국 산정·활용(‘16∼’20)
- 기존 물 수요관리 방안 지속 추진(‘16∼’25)
물발자국(water footprint) 개념

- 2002년 네덜란드 트벤데대학교 아르옌 홀스트라(Arjen Hoekstra) 교수의 ‘가상수 무역에 관한 국제전문가회의’에서 소개한 ‘물발자국’은 생태발자국(Ecological Footprint), 탄소발자국(Carbon Footprint)과 같은 환경발자국 개념 가운데 하나로, 개인이나 지역, 집단 등이 환경에 미치는 영향을 측정하기 위한 지표의 하나이다.
- 물발자국은 농산물, 축산물, 공산품의 생산·유통·소비 단계에 사용되는 총계적인 물을 말하며, 한 국가 내의 수자원 총량 산출 시 국제무역을 통해 수출, 수입되는 물의 양까지 고려하여 산출되며 이는 해당 국가의 물수지(Water Budget)까지 포함하여 계산한 것이다.
- 물발자국은 크게 녹색·청색·회색 물발자국으로 나누어 산정
 - 녹색 물발자국은 강우를 통해 자연적으로 공급된 물로 에너지 투입이 없이 사용되는 물의 양을 가리킨다.
 - 청색 물발자국은 에너지를 투입해야만 사용할 수 있는 물의 양을 가리키며, 이는 제품을 생산하기 위해 사용한 관개용수와 소비·유통될 때 사용된 물의 총량을 포함한다.
 - 회색 물발자국은 제품이나 서비스를 생산할 때 발생하는 오염된 물의 양을 말하며, 오염된 물을 수질기준에 적합하도록 정화하는데 필요한 물의 양으로 계산된다.

물 발자국 (water footprint)

<table>
<thead>
<tr>
<th>물의 양 (litres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 동물의 소금</td>
</tr>
<tr>
<td>1 임عل의 커피</td>
</tr>
<tr>
<td>1 임술의 커피</td>
</tr>
<tr>
<td>1 임술의 사과</td>
</tr>
</tbody>
</table>

[물 발자국 (water footprint)]
1-6. 관계부처 협업 강화

가. 현황 및 문제점

- 현재 우리나라의 물관련 법령체계는 물확보, 물환경 보전, 재해, 지표수, 지하수 등 각각의 목적별로 제정된 개별 법률97)에 의해 거버넌스가 분산되어 있어 통합적·원칙적 차원에서 거버넌스 법적 체계가 미흡
- 향후 기후변화 등 물관련 위험대응과 물복지에 대한 기대를 온전히 충족시킬 수 있도록 통합 물관리 체계 필요

나. 주요대책

- (단기) 행정 ‘물관리협의회’를 중심으로 부처간 협업체계 강화
- (장기) 통합 물관리의 법적제도적 기반 마련

'물관리협의회' 활성화

- 물의 효율적인 관리 위해 국무조정실 주관으로 ‘물관리협의회’를 신설(‘15.9)하여 가뭄 대책 수립 및 수자원의 통합적 관리방안 등 물관리 현안을 점검하고 조정 중
- 향후 관계부처(환경부, 국토부, 농식품부, 기상청, 안전처 등) 차관급으로 구성된 협의회와 업무담당자로 구성된 실무협의회를 주기적으로 개최하는 등 협의체 운영을 활성화하여 물의 효율적 이용·관리 추진
- 또한, 관련 정보 및 계획 등을 지속적으로 공유·연계하여 각 부처가 개별적으로 수행하고 있는 물관리 정책의 유기적 통합·조정 강화

97) 수질 및 수생태계 보전법, 국토기본법, 하천법, 지하수법, 댐법, 수도법, 농어촌정비법, 전원개발촉진법, 소하천정비법, 온천법, 공유수면관리법 등
통합 물관리의 법적제도적 체계 마련

각 부처와 기관으로 분산다원화된 물관리 체계를 통합하기 위해 조직 체계 개편, 「물관리 기본법」제정 및 국가물관리위원회 설립 등을 다각적으로 검토하고 이에 대한 합의 형성에 적극 협력

물관리 조직기관이 일원화 되면 각종 법률제도, 다원화된 수리권의 및 소속·산하기관들의 통합을 효율적으로 달성할 수 있어 근본적인 해결이 가능한 최선의 방안이나,
- 당면한 문제를 시급하게 해결하기 어렵고, 부처간 합의를 넘어 다양한 내·외부적 요인에 따라 실현가능성이 좌우된다는 한계가 있음

물 관련 정책의 입안·실행을 담당하는 각 부처의 책임과 역할을 명확히 하고 조정할 수 있는 법적 장치로 「물관리기본법」의 제정 필요성이 지속적으로 제기되어 온 바, 기본법을 제정할 경우 다음 사항 반영
- 향후 기후변화 등 물관련 위험대응과 물복지에 대한 기대를 온전히 충족 시킬 수 있는 물관리 기본이념, 물관리 관계 부처 및 기관의 분명한 역할과 책임규정, 통합적인 국가물관리기본계획 등에 대한 규정 포함
- 현재 물관리의 가장 큰 문제점은 1960년대 설정된 부처별 수량관리 권한이 고착화된 것이므로 새로운 물수요를 반영하여 효율적통합적으로 관리조정하여 최적화 필요
- 상하류 지역 간의 수리권 문제, 유역변경 등의 문제로 발생하고 있는 물분쟁 해결을 위해 원칙과 기준을 마련하여 물분쟁 조정 능력 제고
- 이수 및 치수 분야에 편향되어온 수량관리로 인한 이해갈등을 해결하기 위해 수질수생태계와 수량관리의 연계성 강화 필요
다. 향후 추진 일정

- 물관리협의회 운영 활성화(’16년~)
- 물관리기본법 제정, 조직 개편 등 통합 물관리 체계 마련(’17년~)

참고자료 1-6-1

<table>
<thead>
<tr>
<th>구 분</th>
<th>법률명</th>
<th>주요내용</th>
<th>주무부처</th>
</tr>
</thead>
<tbody>
<tr>
<td>국토계획</td>
<td>국토기본법</td>
<td>- 토지/물/천연자원의 이용 및 개발 보존
- 수해, 풍해 및 재해의 방재
- 도시와 농촌의 배치 및 규모 결정
- 산업발전의 선정과 조성
- 공공시설의 배치 및 규모 결정
- 문화, 후생 및 관광에 관한 자원
- 자원의 보호, 시설의 배치 및 규모</td>
<td>국토부</td>
</tr>
<tr>
<td>수면이용</td>
<td>내수면어업법</td>
<td>- 내수면의 종합적 이용·관리
- 수산자원의 보호·육성
- 어업인의 소득 증대</td>
<td>농림부</td>
</tr>
<tr>
<td></td>
<td>공유수면관리법</td>
<td>- 바다, 하천, 호수 등 공유 수면의 적절한 보호와 효율적인 이용</td>
<td>국토부</td>
</tr>
<tr>
<td></td>
<td>하천법</td>
<td>- 하천법기본계획 및 하천정비계획
- 하천유역조사 및 흙수예방
- 하천의 정비 및 유지관리
- 하천·저수지·저수지하수관리 등</td>
<td>국토부</td>
</tr>
<tr>
<td></td>
<td>- 생태하천복원사업</td>
<td>환경부</td>
<td></td>
</tr>
<tr>
<td>수량관리</td>
<td>댐건설 및 주변지역지원 등에 관한 법률</td>
<td>- 다목적댐수댐의 건설 및 관리
- 다목적댐 보수부담 및 댐사용권 설정</td>
<td>국토부</td>
</tr>
<tr>
<td></td>
<td>- 지하수수지관리기본계획
- 지하수의 조사 및 개발·이용
- 지하수의 보전·관리 및 지하수영향조사 등</td>
<td>국토부</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 지하수질 보전</td>
<td>환경부</td>
<td></td>
</tr>
</tbody>
</table>
| 수질 및 수생태 관리 | 골재채취법 | - 골재수급기본계획
- 골재채취업
- 골재채취허가제 | 국토부 |
|------------------|-------------|---|
| 소하천정비법 | - 소하천의 정비 및 유지관리
- 소하천의 유수점용허가 등 | 안행부 |
| 농어촌정비법 | - 농어촌 용수개발 | 농림부 |
| 전원개발촉진법 | - 발전용댐 건설 | 산지부 |
| | 환경정책기본법 | - 환경보전 정기종합계획의 수립
- 환경기준의 설정
- 특별대책지역의 지정 및 관리 | 환경부 |
| | 수질 및 수생태계 보전에 관한 법률 | - 수질측정망 설치 및 운영
- 폐수배출 허용기준허가부담금 등 규제
- 특정 호수수질 보전
- 폐수중말 처리장의 설치 등 | |
| | 수 도 법 | - 전국수도종합계획 등 수도정책에 관한 사항
- 상수도 보호구역 지정 및 관리
- 음용수의 수질기준 관리 및 수질검사 | |
| | 하 도 법 | - 하수도정비 기본계획의 수립 및 하수도정비
- 하수종말처리시설의 설치 및 유지관리
- 공공하수도의 사용보전 및 비용부담 등 | |
| | 가축분뇨의 관리 및 이용에 관한 법률 | - 오수정화시설 및 정화조의 설치 기준
- 분뇨처리장의 설치
- 축산폐수 공동처리시설의 설치 등 | |
| | 4대강수계물관리 및 주민지원법 | - 수변구역 지정 및 관리
- 오염총량관리 기본방침, 기본계획 및 시행계획
- 수질개선사업계획 등 | |
| | 먹는물관리법 | - 먹는샘물의 수질기준 관리, 먹는샘물 개발허가 | |
| 재해관리 | 자연재해대책법 | - 방재조직 및 방재기본계획 수립
- 풍수해 예방
- 재해복구 등 | 안행부 |
| | 농어촌재해대책법 | - 농어촌 재해의 예방대책
- 피해의 보상 및 복구 등 | 농림부 |

자료: 김성수 외, 2012, 기후변화 대응을 위한 지속가능한 물관리 법제에 관한 연구
2. 유역통합관리로 깨끗한 물 확보

중전 대책

• 수질오염총량제 전(全)수계로 도입
• 가축분뇨 자원화 촉진 및 시설 확충
• 비점오염관리 제도적 기반 구축 및 저감사업 확대
• 하천·변류 중심 관리

2025 계획

• 상수원 1등급 달성목표와 수질오염총량제의 연계
• 가축분뇨 방류수 관리를 산업폐수 수준으로 강화
• 경제적 유인책을 활용한 사전예방적 비점오염원 관리
• 지류·지천 및 상수원호소 집중관리

2-1. 주요 상수원 수질 1등급 달성을 위한 유역계획의 수립

가. 현황 및 문제점

 우리나라의 하천 수질은 1980년 환경청 발족 이후 「제1차 물환경관리 기본계획(‘06~’15)」 등에 따른 과감한 환경시설 투자의 성과로 비약적으로 개선

- 특히, 80~90년대 오염이 매우 심했던 주요 도심하천 20개를 대상으로 2014년도 수질을 분석한 결과, BOD가 과거에 비해 평균 76.9㎎/L에서 3.8㎎/L로 약 95% 이상 감소하는 등 수질이 크게 개선

 • ’14년 기준으로 안양천의 수질오염도는 1970~80년대 BOD 146㎎/L 수준에서 4.7㎎/L로, 근호강은 BOD 191.2㎎/L에서 3.8㎎/L로 크게 감소98)

98) 환경부 보도자료, 바라겠든 도심하천, 다시 국민의 품으로(’15.1.13 배포)
그러나 많은 수계에서 난분해성 유기물질은 여전히 증가 추세이고 일부 상수원은 I등급에 미달하고 있으며, 개량분뇨 및 농업비점오염 관리는 아직 미흡한 상황

깨끗한 물을 확보하기 위해서는 유역통합관리를 강화해야 하며, 이에 가장 첫 번째 단계는 목표설정 및 유역계획 수립이 필요

- ’90년대 이후 하천을 대상으로 하는 지역주민 참여가 활발히 이루어졌으나99) 대부분 하천의 환경개선과 관련된 참여운동 중심으로 이루어져 있고 소권역 계획 수립 및 시행에 대한 참여는 거의 전무100)
- ’99년에 “한강수계 상수림수질개선 및 주민지원 등에 관한 법률” 제정시행 이후 4대강 유역의 거버넌스 역할을 수행할 수계관리위원회 설치·운영 중임
 - 수계관리위원회는 분권적 의사결정기구로서 유역별 수질보전대책 협의·조정, 수계관리기금의 운용·관리, 주민지원사업계획 협의·조정, 물이용부담금 부과율 조정, 기타 유역관리정책 등의 협의·조정 기능 수행

99) 국내의 하천관련 NGO 네트워크로는 강살리기 네트워크, 향양 지속가능 발전협의회, 부산 하천살리기 시민연대 등이 있고 만·관협력이 지역인천광역시 하천살리기 추진단, 부산 하천살리기 추진단, 수원시 하천살리기 시민네트워크 등이 있다. 지역 주민단체로는 화성천 살리기 주민모임, 대천천 네트워크, 울산 강살리기 네트워크, 과천 천 갈포천 네트워크, 공촌천 네트워크 등이 있다.(강형식 외, 2013)
100) 대표적인 주민참여 유역관리의 주체들(김해시 수질개선 협의회, 대청호 보전운동 본부, 전주생태하천 협의회) 등 주요 활동을 분석한 결과
101) 정부 주도의 물환경개선정책에서 벗어나 주민이 자발적으로 물환경개선에 적극 나설 수 있도록 민간 참여 원칙에 민·관 합동으로 계획 수립·이행 및 평가 추진
나. 주요대책

- 주요 상수원 수질을 좋음(I) 등급 이상으로 달성
- 대·중·소권역 계획 및 중점투자계획 수립·이행
- 유역가버넌스 활성화 및 참여확대

- 목표 설정 및 유역계획 수립
 - 환경부장관은 "제2차 물환경관리 기본계획"에 따라 주요 상수원 수질을 좋음(I) 등급 이상으로 달성하도록 물관리 목표를 제시
 - 이를 달성하기 위하여 다양한 주체들(유역(지방)환경청, 지방단체 등)이 본 계획을 지침서 삼아 유역특성을 고려한 유역계획을 수립

- 대·중·소권역 계획 및 중점투자계획 수립·이행
 - 대권역 계획 수립(한강, 낙동강, 금강, 영산강·섬진강)
 - 국가 목표수질을 달성하기 위해 유역(지방)환경청은 본 계획의 기본방향과 방안을 공유하고 해당 유역의 특성을 반영한 대권역 계획 및 중점 투자 계획을 수립하여 목표수질 달성수단을 강구
중권역 및 소권역 유역관리 계획 수립
- 실질적인 수질개선을 위해 선택적으로 수립토록 하여 필요한 지역에 수질 개선 역량을 집중할 수 있도록 중·소권역 유역관리 계획 제도 개선
 - 현재 117개의 중권역 (한강:30개, 낙동강:33개, 금강:22개, 영산강·섬진강:32개), 850개의 소권역 (한강:290개, 낙동강:272개, 금강:141개, 영산강·섬진강:147개) 존재
- 상수원이 위치하거나 수질목표 달성이 곤란한 중·소하천에 대해서는 유역 (지방)환경청장이 중권역 계획을, 지방자치단체장이 소권역 계획을 수립·이행하도록 계도 개선을 추진

〈표 2-1-2〉 제1차와 제2차 물환경관리 기본계획 비교

<table>
<thead>
<tr>
<th>제1차 기본계획('06∼'15)</th>
<th>제2차 기본계획('16∼'25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>법적 근거</td>
<td>법적 근거</td>
</tr>
<tr>
<td>* 붕분명</td>
<td>* 법 개정 추진중</td>
</tr>
<tr>
<td>* 대권역계획 : 수질법 제24조</td>
<td></td>
</tr>
<tr>
<td>성격</td>
<td>성격</td>
</tr>
<tr>
<td>* 4대강 대권역계획의 묶음</td>
<td>* 대권역 유역관리 계획 등 관련 정책 수립 시 가이드라인적 성격</td>
</tr>
<tr>
<td>계획 체계</td>
<td>계획 체계</td>
</tr>
<tr>
<td>* 대권역(장관) → 중권역(유역청장)</td>
<td>* 기본계획(장관) → 대권역-중권역(유역청장)</td>
</tr>
<tr>
<td>* 소권역(지자체)</td>
<td>* 소권역(지자체)</td>
</tr>
<tr>
<td>* 전체 중권역 의무 수립</td>
<td>* 상수원, 표준유역 등 필요시</td>
</tr>
</tbody>
</table>

유역특성을 반영한 지역기반 계획 수립
- 주요 본류·지류·지천의 수질목표는 물이용의 목적과 유역현황, 자연환경의 특성 등 물환경 여건에 따라 다르게 설정
- 이에 따라 지역 여건이 반영된 계획을 수립하고, 유역단위의 관리에서는 중앙정부보다 유역환경청, 지방자치단체 등 지방 공공기관의 권한과 책임 강화가 필요

102) 중권역 및 소권역은 정부공통으로 사용하는 물관리정보공동 유역도의 중권역 및 표준유역을 각각 적용
유역거버넌스 활성화 및 참여확대

- 유역계획 수립 및 이행 시 유역에서 벌어지는 물문제와 물갈등 현안을 충분히 반영하기 위해서는 유역 거버넌스가 활성화

수계위원회를 중심으로 유역단위의 민·관·학·연 거버넌스를 구축하고, 유역환경센터(가칭)를 운영하여 민간부문의 활동 기반을 마련
- 유역의 수질개선과 생태계 복원·정화운동을 더욱 확산하기 위해 필요한 지역에 유역환경센터를 구성·운영하여 민간부문의 활동 기반 마련
- 유역환경센터는 소유역 단위로 수질개선활동과 관련된 지원·교육 등의 역할을 전담하는 기구로, 해당 소유역의 특성에 맞는 단체 또는 활동가를 지정하고 수계관리위원회와 지자체의 예산·정책적 지원이 함께 이뤄지도록 검토 필요

유역환경센터를 중심으로 소유역 계획 수립이행 시 사업자, 단체, 주민 등 이해관계당사자의 참여를 확대하는 제도를 확립하여 유역 기반의 물환경 관리를 실현
- 아울러 유역환경센터가 다수 이해관계가 걸려 있을 수 있는 소유역관리에 있어서 훌륭한 조정자 역할을 수행하고 유역구성원간 파트너십을 이끌어낼 수 있도록 검토

다. 향후 추진 일정

- 주요 상수원 1등급 달성(’16∼’25)
- 대·중·소권역 계획 및 중점투자계획 수립 및 이행(~’18)
- 유역거버넌스 활성화(’16∼’25)
 - 유역환경센터 설립 및 거버넌스 강화 (’16∼’25)
2-2. 오염총량제를 상수원 수질개선의 핵심수단으로 활용

가. 현황 및 문제점

전국 규모의 수질오염총량관리제 시행 중

- 수질오염총량관리제는 ’04년 3대강(낙동강, 금강, 영산강·섬진강)수계에서 점진적으로 시작되어 현재까지 진행중이며 한강수계는 팔당유역(광주시 등 7개 시·군)에서 임의제로 시작하여 ’13.6월부터 전 구간에 의무제로 시행

<table>
<thead>
<tr>
<th>구분</th>
<th>단위 유역</th>
<th>BOD(mg/L)</th>
<th>개선율 (1-B/A)×100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>목표</td>
<td>’04년(A)</td>
</tr>
<tr>
<td>낙동강</td>
<td>낙본K</td>
<td>3.0</td>
<td>2.7</td>
</tr>
<tr>
<td>금강</td>
<td>금본F</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>금본K</td>
<td>3.0</td>
<td>4.6</td>
</tr>
<tr>
<td>영산강</td>
<td>보성B</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>섬진강</td>
<td>영본B</td>
<td>5.6</td>
<td>9.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>구분</th>
<th>단위 유역</th>
<th>BOD(mg/L)</th>
<th>개선율 (1-B/A)×100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>목표</td>
<td>’04년(A)</td>
</tr>
<tr>
<td>팔당상류</td>
<td>경인B</td>
<td>3.8</td>
<td>4.5</td>
</tr>
</tbody>
</table>

자료 : 국립환경과학원, 2015, 수질오염총량관리 워크숍 발표자료, 수질오염총량제 정책이해와 추진방향

〈그림 2-2-1〉수질오염총량관리제 이후 하천의 오염부하량감소(위) 및 수질개선 현황(아래)
제2차 환경관리 기본계획 부록

1단계 수질오염총량관리제(‘04∼’10년) 시행으로 3대강수계 주요 상수원 및 대표지점에서의 BOD는 ‘04년 대비 11.1∼44.4%가 개선되었고, 하천으로 유입하는 오염부하량 역시 제도 시행 전의 60.4% 수준으로 감소한 것으로 분석103)

- 현재 수질오염총량관리 2단계(‘11∼’15년)가 마무리되고 3단계(‘16∼’20년)가 시행 중

물관리 여건 변화를 반영한 수질개선 미흡

(물환경여건변화 반영 미흡) 현행 총량관리제는 관리대상 물질로 BOD, T-P를 선정하여 실시함에 따라, 난분해성물질 등에 대한 수질문제에 효과적으로 대응하기 어려움

또한 저수량(Q275) 또는 평수량(Q185) 기준을 관리하는 오염총량제는 그간 점배출부하 비율의 감소(방류수 수질 기준강화 등), 비점배출부하 비율의 증가 등에 따른 하천환경변화로 인해 하천 수질패턴 변화를 반영한 유량조건 및 수질의 관리기준 설정 필요

자료 : 국립환경과학원, 2015, 수질오염총량관리 워크숍 발표자료, 지역현안 중심 지류총량제 추진 방향

〈그림 2-2-2〉수질이 보다 악화된 조건의 수질개선이 필요

103) 류덕희, 2012, 우리나라 수질오염총량제에서의 부하량 삭감 동향
오염총량관리제 시행체계 실효성 제고 필요

- (이행평가체계) 현행 총량제 이행평가 체계 실효성 제고 필요
 - 시행계획에 대한 전년도 이행사항 평가(이행평가) 후 연도별 할당부하량을 초과한 경우 환경부 및 지방자치단체가 재재를 할 수 있도록 규정되어 있으나, 실질적 활용은 미미

- (충량업무의 간소화) 다양한 개발사업의 지역개발부하량 검토 및 누적관리 대장 관리의 복잡성으로 인해 지자체 담당자의 업무가 가중되고, 지역개발 부하량의 체계적 관리가 부족

- (지류수질 개선미흡) 본류 수질은 수질기준을 만족하지만, 아직도 내 집 앞을 흐르는 지류 수질은 개선이 미흡한 사례 발생
 - 총량 단위유역(135개) 중 본류 수질은 만족하나 수질이 초과하나 지류의 수질이 초과하는 유역은(29개)로 약 22%(’13년 BOD기준)
 ※ 남한강하류 권역의 대표지점(강상)은 BOD 1.5mg/L으로 수질기준(2mg/L)을 만족하지만, 상류는 6.9mg/L 수준(복합전)
 ※ 만경강 권역 대표지점(김제)은 BOD 4.5mg/L으로 수질기준(5.0mg/L)을 만족하지만, 상류는 16.5 mg/L 수준(익산천)

- 지류 오염물질 본류유입의 제어, 지역 현안에 따라 다양한 오염물질을 자율적으로 관리하기 위한 정책 필요

<table>
<thead>
<tr>
<th>남한강하류(목표 BOD 2.0mg/L)</th>
<th>만경강(목표 BOD 5.0mg/L)</th>
</tr>
</thead>
</table>

자료 : 국립환경과학원, 2015, 수질오염총량관리 워크숍 발표자료, 지역현안 중심 지류총량제 추진 방향

〈그림 2-2-2〉 본류 수질목표 달성이나 지류목표 초과 예
비점오염원 삭감량 인정방안 미흡

- 일부 비점오염지각시설의 경우 삭감량을 인정받기 위한 모니터링 자료 제출이 어려워 비점오염원 삭감량 반영이 미흡
 - 도로 청소 등의 비구조적 방법, LID 기법 등 모니터링이 어려운 시설에 대한 삭감량 인정방안 마련 필요
 - 점오염원에 대한 삭감계획은 4대강 모두 한계에 부딪혀 '21년도부터 시행 되는 4단계 오염총량관리제에는 비점오염원 삭감량 인정 방안 마련 필요

나. 주요대책

◆ 물환경여건 변화를 고려한 오염총량관리제의 실효성 제고
◆ 지류총량제 도입
◆ 비점오염원 삭감 다형화방안 마련
◆ 오염총량관리제 시행체계 개선 및 간소화 방안 마련

□ 물관리여건 변화를 고려한 오염총량관리제의 실효성 제고

(TOC 도입기반) TOC를 총량관리 대상물질로 도입하기 위한 기반 마련
 - 난분해성 유기물질 지표인 TOC를 새로운 관리대상 물질로 도입하기 위해서 오염원별 TOC 원단위 산정 등 부하량 산정을 위한 기반 구축과 현명기초시설 법적 방위 수질 및 개별 배출시설 배출허용기준 설정 등 제반여건 마련 후 차기 단계 총량제 도입 추진

(총량관리기준 등 차기*단계 기반 마련) 과거 및 장래 물환경변화 영향 등을 고려한 기준유량 설정, 목표수질 관리 기준 등 차기 총량관리계획작용 관리 기준 마련 및 4단계 목표수질 설정

* 한강 2단계, 낙동강 금강영산성전강 4단계
수질변화 등을 고려한 유량 관리조건 분석과 기준유량(안) 및 목표수질 설정원칙과 관리목표 설정방법 마련
4단계 광역사도 목표수질(안) 설정 후 지자체와 협의를 통해 목표수질 확정
※ 한강 수계 강원, 충북 의무제 총량 확대 실시

(지류총량제 도입) 오염우식지류 선정 및 지류총량제 도입
지류 총량제는 지자체 현안(다양한 대상물질)에 따라 자율 추진
지류 총량관리 대상물질 및 관리 필요성 여부에 대해서는 유역구성원이 의사결정하도록 하여 보다 선진적인 유역관리체계(소권역)를 구축
유량-수질관계를 분석(부하지속곡선, Load Duration Curve(LDC) 고려)하여 오염상황에 대한 구체적인 정보를 제공하여 지자체 차원의 수질개선 노력을 유도
※ 참고자료 2-2-2:오염부하량지속곡선(LDC)

지류 총량제 시행 지자체에 대한 행정‧재정적 인센티브 부여방안 수립
(예산 우선지원, 지원율 상향 등)

<table>
<thead>
<tr>
<th>구분</th>
<th>현행 오염총량관리제</th>
<th>지류총량제</th>
</tr>
</thead>
<tbody>
<tr>
<td>공간범위</td>
<td>• 수계 내 모든 지역</td>
<td>• 특정 현안 지류</td>
</tr>
<tr>
<td>대상</td>
<td>• BOD, T-P</td>
<td>• BOD, T-P 외 지류별 관리가 필요한 오염물질 다양화(유기물, 영양물질, 유해물질 등)</td>
</tr>
<tr>
<td>오염물질</td>
<td></td>
<td></td>
</tr>
<tr>
<td>목표수질</td>
<td>• 중권역 목표기준 달성을 위한 단위유량별 목표수질 강화</td>
<td>• 지류 내 문제유염 물질별 목표수질을 위한 목표설정</td>
</tr>
<tr>
<td>관리기준</td>
<td>• 다양한 유량조건</td>
<td>• 다양한 유량조건(LDC 기반)</td>
</tr>
<tr>
<td>지역참여</td>
<td>• 의무제</td>
<td>• 자발적 참여</td>
</tr>
</tbody>
</table>

비점오염원 식감 다양화 방안 마련

(도시비점) 개발사업의 비점저감시설에 대한 사전사후관리 철저, 생태면적 및 도로청소 등 신규 비점저감기법을 폭넓은 인정 방안 검토

104) 일반 유량자료와 수질기준자료로부터 부하량을 산정하여 이 부하량을 크게 순으로 도식화한 곡선으로 전체 유량범위에서의 부하량 분포를 확인할 수 있으며 유량구간별 목표 수질 초과 반도정도, 허용부하량 및 식감부하량의 크리 파악에 용이
- 다양한 LID/GSI(개별 요소뿐만 아니라 두 개 이상의 요소조합)에 대한 적정한 삭감효율 제시, 실제 모니터링 수행을 통한 삭감량 인정 및 사후 관리 강화를 통해 총량제 내 비점삭감이행률 제고

(농촌비점) 일정규모 이상 축사 신축 시 사전합당관리, 친환경농법 등 비 구조적인 방안에 대해 삭감량 인정 방안 검토

- 총량관리제 시행체계 개선 및 간소화 방안 마련

(이행평가 체계 개선) 수질오염총량제의 연차별 이행평가에 따른 지자체의 자발적으로 관리할 수 있도록 실효성 강화
- 연차별 이행평가 결과 정보를 공개하여 지자체 및 지역 주민의 관심을 높이고 지자체가 스스로 제재조치 등을 취할 수 있도록 제공하는 방안을 추진

수질오염총량관리 간소화 방안 마련
- 부하량을 체계적으로 관리할 수 있는 전산시스템을 구축하여 지역개발사업 관리와 점비점개발량 간 전환 승인 등에 활용

《그림 2-2-4》수질오염총량관리전산시스템
다. 향후 추진 일정

- 물관리역전 변화를 고려한 총량관리의 실효성 제고
 - TOC 기반마련 구축(‘16∼’20), 총량관리기준 등 차기 단계 기반 마련(‘16∼’18), 지류총량제 도입 추진(‘16∼’20)
- 비점오염원 삭감량 인정 다양화 방안 마련(‘16∼’25)
- 총량관리제 시행체계 개선 및 간소화 방안 마련(‘16∼’25)

참고자료 2-2-1

- 낙동강, 금강, 영산강·섬진강 3단계 목표수질
- 낙동강수계

<table>
<thead>
<tr>
<th>수계 구간명</th>
<th>설정지점</th>
<th>목표수질(mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BOD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2단계</td>
</tr>
<tr>
<td>낙본A</td>
<td>강원도와 경상북도 경계의 낙동강 본류지점</td>
<td>1.5</td>
</tr>
<tr>
<td>낙본F</td>
<td>경상북도와 대구광역시 경계의 낙동강 본류지점</td>
<td>2.0</td>
</tr>
<tr>
<td>금호B</td>
<td>경상북도와 대구광역시 경계의 금호강 본류지점(남천 합류후)</td>
<td>3.8</td>
</tr>
<tr>
<td>금호C</td>
<td>대구광역시와 경상북도 경계지점의 금호강 본류지점(남동강 본류 합류전 금호강 본류지점)</td>
<td>4.0</td>
</tr>
<tr>
<td>낙본G</td>
<td>대구광역시와 경상남도 경계지점의 낙동강 본류지점(화천 합류전 낙동강 본류지점)</td>
<td>2.9</td>
</tr>
<tr>
<td>화천A</td>
<td>경상북도와 경상남도 경계지점의 화천 본류 지점(남동강 본류 합류전 화천본류 지점)</td>
<td>1.5</td>
</tr>
<tr>
<td>밀양A</td>
<td>경상북도와 경상남도 경계의 밀양강 본류 지점</td>
<td>1.4</td>
</tr>
<tr>
<td>낙본L</td>
<td>경상남도와 부산광역시 경계의 낙동강 본류 지점(양산천 합류후 양산시와 부산광역시 경계지점)</td>
<td>3.1</td>
</tr>
</tbody>
</table>
○ 금강수계

<table>
<thead>
<tr>
<th>수계 구간명</th>
<th>설정지점</th>
<th>목표수질 (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BOD</td>
</tr>
<tr>
<td></td>
<td>2단계</td>
<td>3단계</td>
</tr>
<tr>
<td>금본C</td>
<td>전라북도와 충청남도 경계의 금강 본류지점 (부주군과 금산군 경계지점)</td>
<td>1.2</td>
</tr>
<tr>
<td>금본D</td>
<td>충청남도와 충청북도 경계의 금강 본류지점 (금산군과 영동군 경계지점)</td>
<td>1.1</td>
</tr>
<tr>
<td>금본F</td>
<td>충청북도와 대전광역시 경계의 금강 본류지점 (대청댐 방류수문 앞 지점)</td>
<td>1.0</td>
</tr>
<tr>
<td>유등A</td>
<td>충청남도와 대전광역시 경계의 유등천 본류지점 (금산군과 대전광역시 중구 경계지점)</td>
<td>1.2</td>
</tr>
<tr>
<td>갑천A</td>
<td>대전광역시와 충청북도 경계의 갑천 본류지점 (금강 본류 합류 전)</td>
<td>5.9</td>
</tr>
<tr>
<td>금본G</td>
<td>충청북도와 세종특별자치시 경계의 금강 본류지점 (Caucasian 혐류 후 청주시와 세종특별자치시 경계지점)</td>
<td>2.4</td>
</tr>
<tr>
<td>병천A</td>
<td>충청남도와 충청북도 경계의 병천 본류지점 (천안시와 청주시 경계지점)</td>
<td>2.3</td>
</tr>
<tr>
<td>미호B</td>
<td>충청북도와 세종특별자치시 경계의 미호천 본류지점 (성남시와 세종특별자치시 경계지점)</td>
<td>4.3</td>
</tr>
<tr>
<td>금본H</td>
<td>세종특별자치시와 충청남도 경계의 금강 본류지점 (성남군과 성남시 경계지점)</td>
<td>2.9</td>
</tr>
<tr>
<td>금본K</td>
<td>충청남도와 전라북도 경계의 금강 본류지점 (부여군과 익산군 경계지점)</td>
<td>3.0</td>
</tr>
</tbody>
</table>

○ 영산강-섬진강 수계

<table>
<thead>
<tr>
<th>수계 구간명</th>
<th>설정지점</th>
<th>목표수질 (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BOD</td>
</tr>
<tr>
<td></td>
<td>2단계</td>
<td>3단계</td>
</tr>
<tr>
<td>영본A</td>
<td>전라남도와 광주광역시 경계의 영산강본류 지점 (담양군과 광주광역시 북구 경계지점)</td>
<td>2.1</td>
</tr>
<tr>
<td>황룡A</td>
<td>전라남도와 광주광역시 경계의 영산강본류 지점 (창녕군과 광주광역시 광산구 경계지점)</td>
<td>2.2</td>
</tr>
<tr>
<td>영본B</td>
<td>광주광역시와 전라남도 경계의 영산강본류 지점 (광주광역시 남구와 사주시 경계지점)</td>
<td>5.6</td>
</tr>
<tr>
<td>섬본C</td>
<td>전라남도와 전라북도 경계의 섬진강 본류 지점 (순천군과 광양군 경계지점)</td>
<td>1.5</td>
</tr>
<tr>
<td>요천B</td>
<td>전라북도와 전라남도 경계의 요천 본류 지점 (성진강본류 합류전 요천 본류 지점)</td>
<td>1.5</td>
</tr>
<tr>
<td>섬본E</td>
<td>전라남도와 경상남도 경계의 섬진강 본류 지점 (영양군과 두원군 하동읍 경계지점)</td>
<td>1.3</td>
</tr>
<tr>
<td>섬본F*</td>
<td>경상남도와 전라남도 경계의 섬진강 본류 지점 (성진강 본류 종점)</td>
<td>-</td>
</tr>
</tbody>
</table>

* 섬본F는 해수염 구간으로 목표수질 설정 제외
오염부하량지속곡선(LDC)
- '07~'09년간 한강의 말단지점에서 대략 일주일 간격으로 실측된 유량자료에 BOD와 T-P 농도를 곱하여 산정된 오염부하지속곡선 이용하여 수질개선 대책 마련에 활용

자료: 국립환경과학원(2011a).

- LDC를 활용하면 지역 유량특성을 반영한 적절한 식감계획을 수립할 수 있음
지류말단에 목표수질을 설정하기 위한 지류측정망 조사

- 지류말단에 목표수질을 설정하기 위한 지류측정망 조사(‘14∼‘16)
 - (대상지점) 550개의 소권역
 - (측정망 설치계획)

 • (단기) 기존 측정망 이용(168개)*, 기존 총량측정망 지점 이동(161개, 시군경계→지류 말단)
 ※ 기존 시군경계지점(소하천) 측정의 목적은 목표수질 초과시 책임을 규명하기 위함이었으나, 그간 활용가치가 미미하여 측정 인력재정 이동 필요
 ※ 다만, 향후 책임규명이 필요한 경우 이행평가시 지자체가 조사토록 권고

 • (장기) 지류측정망 위치 신설(155개) 또는 측정항목 확대(66개)*하여 주요 지천의 수질조사 체계 강화
 ※ 현행 총량측정망은 11개항목(pH, DO, BOD, COD, TOC, SS, 총질소, 총인, 수온, 전기전도도, 유량) 만을 측정
 ※ 국가일반측정망에서 총량측정망과 동일한 항목(유량제외)을 측정하고 있으나, 측정시기가 상이하여 연계활용가치 저하 ⇒ 측정시기 조율필요

〈시군경계지점의 총량측정망 이동〉
국외사례 2-2-4

미국은 개별하천에서 문제가 되는 모든 오염물질을 총량관리

- 미국은 BOD와 T-P만을 대상항목으로 설정한 우리나라와 달리, 환경기준에 있는 모든 오염물질을 TMDL(Total Maximum Daily Load, 수질오염총량제도) 대상항목으로 설정하여 관리

미국 TMDL 승인현황

- 관리지역 역시 수계 전체가 아닌 문제가 되는 개별하천을 대상으로 하고 있음. 즉, 하천의 측정지점에서 수질기준을 초과하는 모든 항목을 총량으로 관리하고 있는 것
- TMDL 대상 항목으로 가장 많은 것은 병원균이며(22.8%), 다음으로는 금속(17.8%), 수은(14.2%), 영양물질(10.9%)의 순서로 나타나고 있으며, 하천의 오염특성에 따라 관리물질을 달리하고 있음
- 유타주 조단강의 경우, 하천에서 문제가 되고 있는 용존산소량(DO), 총용존고형물(TDS), 대장균(E.coli), 온도 등 여러 항목을 TMDL으로 관리

여러 개의 수질항목에 대해 TMDL을 적용하고 있는 유타주 조단강 사례
2-3. 지류·지천 수질개선 강화

가. 현황 및 문제점

- 지류·지천은 국민의 일상적인 활동 및 휴식이 이루어지는 중요한 공간이며 이곳에서 발생하는 수질문제는 결국 본류까지 영향을 미치므로 수생태 서식환경 및 수질이 불량하거나 본류가 아닌 모든 경우 고려하여 영향이 큰 지류·지천은 중점 관리를 할 필요가 있음

- 현재까지 상수원 및 본류 수질개선 중심의 물환경 투자에 따라 본류수질은 양호한 반면 작은 규모의 오염하천은 개선 미흡한 상황

 - 다양한 복잡한 관리수단이 요구되는 소규모 하천의 개선보다는 개선효과가 큰 대형 환경기초시설의 설치확충에 편중
 - 이로 인해 상수원이 없는 4대강 외 기타 하천의 경우 투자가 미흡하여 심각한 수준의 수질오염 상태 지속

- 최근 국내에서는 오염지천을 단기간에 개선하기 위해 하수도, 생태하천복원 등 모든 수단을 집중하는 '통합·집중형 오염지류 개선지침' 제정(12.3)하고 '15년 누계로 대상 하천수 40개, 개선 사업수 171개로 추진하고 있음

<table>
<thead>
<tr>
<th>구분</th>
<th>대상 하천수</th>
<th>개선 사업수</th>
<th>'15년 추진(사업수)</th>
<th>'16년 예산분배(사업수)</th>
<th>투자실적 및 계획(억원, 국고기준)</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>40</td>
<td>171</td>
<td>116(준공 26)</td>
<td>80</td>
<td>계 '14까지 '15 '16 '17 '18 '19</td>
</tr>
<tr>
<td>1차</td>
<td>10</td>
<td>52</td>
<td>49(준공 16)</td>
<td>24</td>
<td>3,964 2,002 642 559 503 188 70</td>
</tr>
<tr>
<td>2차</td>
<td>11</td>
<td>52</td>
<td>39(준공 5)</td>
<td>26</td>
<td>3,780 1,337 801 533 498 538 73</td>
</tr>
<tr>
<td>3차</td>
<td>10</td>
<td>39</td>
<td>27(준공 5)</td>
<td>19</td>
<td>3,849 1,106 543 469 808 552 371</td>
</tr>
<tr>
<td>4차</td>
<td>9</td>
<td>28</td>
<td>1</td>
<td>11</td>
<td>2,118 95 23 67 591 733 609</td>
</tr>
</tbody>
</table>

〈표 2-3-1〉 통합·집중형 오염지류 개선사업 추진 현황 및 계획
○ '15년 점검 평가결과 통합·집중형 오염지류 개선사업을 통해 '15.12월 현재 1~3차 대상하천 31개 중 16개 하천(51.6%)이 사업 전 대비 수질개선 - (수질개선) BOD 기준 생활환경기준 1개 등급 이상 개선(통합·집중형 오염지류 개선지침 제3조(달성목표) 제1항)

〈표 2-3-2〉사업 추진에 따른 수질개선 현황

<table>
<thead>
<tr>
<th>구분</th>
<th>합계</th>
<th>개선</th>
<th>비개선</th>
</tr>
</thead>
<tbody>
<tr>
<td>합계</td>
<td>31</td>
<td>16개 하천</td>
<td>15개 하천</td>
</tr>
<tr>
<td>1차</td>
<td>10</td>
<td>7개 하천</td>
<td>3개 하천</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(축산천, 홍릉천, 조천, 장성천, 개천, 백천, 신명천)</td>
<td>(대리천, 호곡아촌천, 매곡천)</td>
</tr>
<tr>
<td>2차</td>
<td>11</td>
<td>5개 하천</td>
<td>6개 하천</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(왕숙천, 용정천, 계성천, 신장천, 영산천)</td>
<td>(북하천, 골포천, 김전천*, 창녕천, 함평천, 미체천)</td>
</tr>
<tr>
<td>3차</td>
<td>10</td>
<td>4개 하천</td>
<td>6개 하천</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(계양천, 보강천, 대강천, 장양천)</td>
<td>(옥구천, 여월천*, 신천, 화포천, 아천천*, 무한천)</td>
</tr>
</tbody>
</table>

* 공사 중 결측 등으로 측정횟수가 6회 미만인 경우 분석이 어려워 비개선으로 분류

○ 기본계획 수립, 타당성 조사 등 필수적 행정절차 지연으로 사업추진이 지연되고 있음
- 기존에 수립된 중소권역 유역계획에 따라 체계적으로 사업추진 필요
○ 지류총량제, 비점오염관리지역 등 기존제도와 연동하여 지류지천 관리에 시너지 효과 모색 필요
- 지류총량제 도입한 지역에 통합집중형 오염하천 사업에 우선권 제공
- 우선적으로 수질개선이 필요한 지역(상수원 지류, 비점오염관리지역 지류 등)에 통합집중형 오염하천 사업에 우선권 제공
○ 지감시설설치 위주의 도시형 사업형태에서 벗어난 효율성이 높은 비구조적 지감대책, 도시, 농촌 다양한 오염원 관리할 수 있는 포괄적 제도로 개선 필요
나. 주요대책

- 통합·집중형 오염지류 개선 사업 확대
- 중소권역 유역계획, 지류 총량제 등 기타 제도와 연동 필요
- 개선현황 파악 및 평가를 위한 환류평가 제도 마련

- 통합집중형 오염지류 개선 사업 확대
 - ’25년까지 통합집중형 오염지류 개선사업 100개로 확충
 - 지자체의 참여를 증진시키기 위해 다양한 오염촉량제 삭감량 반영 등 인센티브 제도 마련

- 중소권역 유역계획, 지류 총량제 등 기타 제도와 연동 필요
 - 중소권역 유역계획과 연동 필요
 - 성장단계에서 유역(지방) 침 물환경관리기본계획과 연동하도록 개선하고, 개별사업 지침의 사전필수 요건 검토
 - 지류촉량제, 비점오염관리지역 등 기존제도와 연동할 수 있는 인센티브 제도 마련
 - 지류촉량제 도입한 지역에 통합집중형 오염하천 사업에 우선권 제공
 - 우선적으로 수질개선이 필요한 지역(상수원 지류, 비점오염관리지역 지류 등)에 통합집중형 오염하천 사업에 우선권 제공
 - 저감시설설치 위주의 도시형 사업형태에서 벗어나 효율성이 높은 비구조적 저감대책, 도시, 농촌 다양한 오염원 관리할 수 있는 포괄적 제도로 개선

- 개선현황 파악 및 평가를 위한 환류평가 체계 마련
 - 실효성 있는 사업관리를 위해 조사 주기·방법 개선 추진(제도 개선)
 - 사업 전·후 개선현황 파악을 위한 수질모니터링 의무화 실시(모니터링 국고지원)
 - 생물종, 수생태 건강성 변화 등 조사 실시 확대
다. 향후 추진 일정

- 전국 지류지천 모니터링 및 우선관리오염지류 파악 (’20)
- 통합집중형 오염지류 개선 사업 확대(’25)
- 통합집중형 오염지류 개선 사업 인센티브 및 환류평가 제도 마련(’20)

참고자료 2-3-1

통합집중형 오염지류 개선 사업

- 통합 집중형 오염지류 개선사업은 오염된 하천에 하수도, 생태하천복원 등 다양한 개선수단을 3년 이내의 단기간에 집중 지원하여 체계적인 수질개선과 생태계 복원을 추진하는 사업
 - 통합집중형 오염지류의 선정 기준은 수질현황, 인구밀집지역내 위치, 지역주민 개선요구, 지자체 개선의지 등을 고려하여 선정
 - 통합 집중형 개선사업은 국고보조사업으로 지원되는데 원칙적으로 3년으로 하되, 최대 5년까지 지원

- ’15년 9개 하천 선정, 2,072억원 투자

<table>
<thead>
<tr>
<th>구분</th>
<th>하천명</th>
<th>유역 여건</th>
<th>주요 문제점</th>
<th>주요 개선사업</th>
<th>비고</th>
</tr>
</thead>
</table>
| 현강 | 굴포천 (인천시) | 하천연장: 2.13km, 유역면적: 4.7㎢, BOD(06년): 41.3ppm, 인천시(부평구) 도심 왜행 | 악취개선 민원, 하천유지 육수량 부족, 생활하수 유입 | <총 465억원> | 생태하천(65억)
| | | | | | 하수관거(105억) |
| | 한강 | 하천연장: 2.1km, 유역면적: 2.39㎢, BOD: 5.5ppm, 성남시 수정구 소재 | 생활하수 유입, 비친오염(농경지, 도로변), 악취개선 민원 | <3개소 75억원> | 생태하천(51억)
| | | | | | 하수관거(12억)
| | | | | | 비철지(12억) |
| | 시흥천 (성남시) | 하천연장: 2.1km, 유역면적: 7.2㎢, BOD: 5.5ppm, 성남시 수정구 소재 | 생활하수 유입, 비친오염(농경지, 도로변), 악취개선 민원 | <3개소 35억원> | 하수처리(7억)
| | | | | | 하수관거(13억)
| | | | | | 하수관거(15억)
| | | | | | 하수처리(15, 5억, 계속) |
| | 낙동강 | 하천연장: 14.3km, 유역면적: 32.33㎢, 낙동강, BOD: 2.7ppm, 초동면 등 인구밀집지역과 인접 | 가축분뇨 유입, 악취발생, 생활하수 유입 | <3개소 35억원> | 하수처리(7억)
| | | | | | 하수관거(13억)
| | | | | | 하수관거(15억)
| | | | | | 하수처리(15, 5억, 계속) |

※ 하수처리 (’15, 5억, 계속)
<table>
<thead>
<tr>
<th>구분</th>
<th>하천명</th>
<th>유역 여건</th>
<th>주요 문제점</th>
<th>주요 개선사업</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>온천천 (부산시)</td>
<td>o 하천연장: 14.13km o 유역면적: 55.97㎢ o 수영강</td>
<td>o 악취발생 o 생활하수 유입 o 비점오염(도로변)</td>
<td><2개소 125억원> o 하수관거 ※ BT로 사업준공 후 임대로 국고지원 o 비점저감(125억)</td>
<td>'16~'19</td>
<td></td>
</tr>
<tr>
<td>남평천 (당진시)</td>
<td>o 하천연장: 22.8km o 유역면적: 71.94㎢ o BOD: 8.5ppm(남평천), 9.2ppm(석우천)</td>
<td>o 가축분뇨, 생활하수 유입 o 악취개선 민원 o 비점오염(농경지)</td>
<td><6개소 270억원> o 하수처리(75억) o 하수관거(3억) o 하수관거(3억) o 생태하천복원(122억) o 가축분뇨처리(45억, 계속)</td>
<td>'16~'18</td>
<td></td>
</tr>
<tr>
<td>석우천 (당진시)</td>
<td>o 하천연장: 7.5km o 유역면적: 12.53㎢ o BOD: 9.8ppm</td>
<td>o 가축분뇨, 생활하수 유입 o 악취개선 민원 o 비점오염(농경지)</td>
<td><3개소 104억원> o 하수처리(24억) o 하수관거(59억) o 폐수처리시설(21억)</td>
<td>'16~'17</td>
<td></td>
</tr>
<tr>
<td>천안천 (천안시)</td>
<td>o 하천연장: 18.4km o 유역면적: 10.1㎢,o BOD: 9.6ppm(쌍정천), 10.1ppm(구룡천)</td>
<td>o 강우시 미 하수처리수 유입 o 생활하수 유입 o 비점오염(도로변)</td>
<td><6개소 684억원> o 하수처리(382억) o 하수관거(78억) o 하수관거(152억) o 하수관거(68억) o 생태하천(15억) o 생태하천(30억)</td>
<td>'15~'17</td>
<td></td>
</tr>
<tr>
<td>영산강 해룡천 (순천시)</td>
<td>o 하천연장: 5.68km o 유역면적: 35.54㎢ o BOD: 8.54ppm o 성진강남해</td>
<td>o 악취개선 민원 o 생활오수 유입 o 하천 건천화</td>
<td><3개소 258억원> o 하수처리(57억) o 하수관거(147억) o 생태하천(54억)</td>
<td>'16~'18</td>
<td></td>
</tr>
<tr>
<td>새만금 외정천 (고창군)</td>
<td>o 하천연장: 1.1km o 유역면적: 3.68㎢ o BOD: 2.4ppm</td>
<td>o 악취개선 민원 o 생활하수 유입 o 가축분뇨 유입 o 비점오염</td>
<td><1개소 55억원> o 생태하천(55억)</td>
<td>'16~'18</td>
<td></td>
</tr>
</tbody>
</table>
2-4. 농·축산업 분야 오염원 중점 관리

가. 현황 및 문제점

전단 등 농경지에서 광범위하게 유출되는 영양물질의 유출농도는 대지보다 높으며 가축분뇨의 경우는 발생량은 적으나 고농도로서 부적정하게 관리되어 하천에 유입될 경우 하천 수질 및 수생태계에 심각한 영향을 미침

- 우리나라는 2000년대 초반부터 단위면적 당 양분수지(nutrient balance)가 OECD의 평균 3배 이상
- 우리나라는 OECD 국가 중 높은 국가 중 하나

![질소](그림 2-4-1)

![인산](그림 2-4-1)

<table>
<thead>
<tr>
<th>OECD 평균</th>
<th>한국</th>
<th>일본</th>
<th>네덜란드</th>
<th>이스라엘</th>
<th>벨기에</th>
<th>노르웨이</th>
<th>덴마크</th>
<th>독일</th>
<th>루스부르크</th>
<th>영국</th>
</tr>
</thead>
<tbody>
<tr>
<td>질소 61.5</td>
<td>226.4</td>
<td>180.3</td>
<td>193.3</td>
<td>98.6</td>
<td>117</td>
<td>98.6</td>
<td>90.6</td>
<td>85.8</td>
<td>75.8</td>
<td>67.4</td>
</tr>
<tr>
<td>인산 6</td>
<td>45.3</td>
<td>49.1</td>
<td>11</td>
<td>31.9</td>
<td>5.1</td>
<td>14.5</td>
<td>6.4</td>
<td>0.2</td>
<td>0.4</td>
<td>5.2</td>
</tr>
</tbody>
</table>

OECD 국가의 ’07~’09의 평균이 질소의 경우에 63kg-N/ha, 인의 경우에 6kg-P/ha 인 것에 반해, 우리나라의 경우에는 질소의 경우 3배 이상(228kg-N/ha), 인의 경우는 7배 이상(46kg-P/ha)인 것으로 조사(OECD, 2015)
- 10개 시·도, 155개 시·군의 ’11~’13년 평균 질소와 인산의 양분수지 조사 결과, 초과량은 농경지 ha당 250.4kg, 초과율은 150.4%109)(※ 참고자료
2-4-1: 국내 양분수지 산정 현황

![시·도별 양분수지 초과량 현황 (단위: kg/ha, 2011~2013년 평균)](image)

자료: 세계일보(2015.7.13.), “작물 요구량의 2.5배 질소·인산 뿌려대...오염주범으로"

<그림 2-4-2> 시·도별 양분수지 초과량 현황(2011~2013년 평균)

- 농업생산성 증대를 위한 ‘고투입·고산출’의 집약적 농업으로 전체 비료 (화학비료+가축분뇨 퇴·액비)의 영양물질 중 약 절반만이 작물생산에 활용
- 필요보다 과잉 투입된 양분은 결국 지표수와 지하수로 유출되어 수질 및 수생태계에 부정적인 영향110)을 미침

’25년 농경지 감소 및 축산업 증가에 따라 도양의 양분 축적 심화 전망
- 국내 농경지면적은 ’00년 189만 ha에서 ’13년 171만 ha로 매년 0.8% 지속 적인 감소추세이며 ’24년에는 158만 ha로 감소할 것으로 전망111)
- 반면 축산업은 국민 소득 증가에 따른 육류 소비량 증가로 한우, 돼지, 닭 등의 사육두수 지속적으로 증가112)

109) 세계일보(2015.7.13.), “작물 요구량의 2.5배 질소·인산 투입대...오염주범으로”
110) 과잉된 질소의 경우는 토양 및 물의 산성화, 부영양화, 종다양성의 약화, 지하수의 오염 등을 통해 인체에 위해를 미침 (청색증 및 암을 유발 등을 일으킬 수 있으며, 인의 경우는 담수의 부영양화, 폐산소증, 조류발생 등을 일으킬 수 있다.
111) 한국농촌경제연구원, 2015, 농업전망 2015
가축분뇨 발생량은 '00년 2,540만 톤에서 '13년 4,723만 톤으로 증가했으며, '25년에도 증가할 전망으로 지표수와 지하수 부영양화 심화 예상

(그림 2-4-2) 사육두수와 경지면적의 변화추이

○ 가축분뇨의 발생량은 적으나 고농도로써 부적정하게 관리되어 하천에 유입될 경우 하천 수질 및 수생태계에 심각한 영향을 미침
- 정화처리시설의 기술적 한계 및 운영비 절감을 위해 뇌(尿)위주의 수거, 처리로 농가에서 처리해야 할 고형축분(畜糞)은 인근 부지, 논밭 등에 야적방치되어 비점오염원의 증가 요인

112) '00년 한육우 159만 두, 젖소 54만 두, 돼지 815만 두, 닭 9740만 수, 오리 513만 수에서 '13년 한육우 292만 두 ('00대비 83.5% 증가), 젖소 42만 두('00대비 22% 감소), 돼지 1,001만 두('00대비 23.9%), 닭 1억 3900만 수('00대비 42.9%), 오리 1090만 수('00대비 112.3%) 등으로 젖소를 제외하고 모두 증가함.
113) 현재 농경지의 양분이 이미 과다한 상황에서 향후 가축분뇨 증가 및 농경지 감소와 같은 영양물질의 수요와 공급의 불균형으로 인해 양분공급이 저속적으로 늘어나게 되면 지표수와 지하수로의 영양물질 유출로 인한 피해는 더욱 증가할 것으로 예측
114) 가축분뇨발생량은 전체 오염발생량의 1%에 불과하나, 수질오염부하량은 37%에 달해 하천으로 유출시 수질에 큰 영향을 미침(가축분뇨 BOD 부하량은 생활용수의 90배)
- 최근 대형기업화되고 있는 개별 축산 농가의 적정한 관리 미흡
 - 부영양화 유발물질인 질소, 인의 방류수수질기준이 강화(‘12.11 개정) 되었으나 여전히 TOC 항목이 없음
 - 적정처리 여부를 확인하기 위한 적산전력계, 적산유량계 설치 규정 미비
- ’14년 3월 법 개정으로 가축분뇨의 환경 영향을 조사하기 위한 가축분뇨 실태조사가 도입되었으나 정밀조사에 관한 사항 추가마련 필요(※ 참고자료 2-4-2)

![사진: 하천변 축산농가 옆 퇴비 아적 및 하천 및 도로변 가축분뇨 방치](http://www.me.go.kr)

- 공공부문의 자원화 관련 시설 부족 및 퇴~액비의 생산~운영의 낮은 경제성
 - ’14년 가축분뇨 발생량 약 4천6백만톤 중 79.4%가 퇴~액비로 자원화, 9.2%는 개별농가와 공공처리시설에서 정화처리, 2.9% 정화방류(※ 참고자료 2-4-3: 가축분뇨처리현황)

- ’14년 12월 현재 전국의 가축분뇨공공처리시설 94개소 중 87개소가 정화 처리시설(※ 참고자료 2-4-4, 2-4-5, 2-4-6)

115) T-N 850mg/L→25mg/L, T-P 200mg/L→100mg/L (‘12.11)
116) ’14년 3월, 가축분뇨 등의 정화한 실태조사를 통하여 상수원 등 하천의 수질개선 및 보전, 지하수토양 오염 지역의 관리에 관한 효과적인 정책을 마련함으로써 지역주민의 환경피해를 최소화하기 위하여 「가축분뇨의 관리 및 이용에 관한 법률」 개정
가축분뇨공공처리시설 설치 현황(14년 12월, 개, 톤/일)

<table>
<thead>
<tr>
<th>전 체</th>
<th>정화</th>
<th>에너지화</th>
<th>액비</th>
<th>평균 가동률</th>
</tr>
</thead>
<tbody>
<tr>
<td>개소</td>
<td>용량</td>
<td>개소</td>
<td>용량</td>
<td>개소</td>
</tr>
<tr>
<td>전국</td>
<td>94</td>
<td>11,476</td>
<td>87</td>
<td>11,016</td>
</tr>
</tbody>
</table>

가축분뇨의 배출부터 수집·운반 및 최종처리까지의 체계적 관리 미흡
- 법 개정으로 전자인계관리시스템 도입(117)에 따른 시스템 설치·운영 및 확대 적용 예정(’17.1월)(※ 참고자료 2-4-7)

배출, 운반, 처리, 재활용 과정에 대한 정보전달 사항이 없음
* 인계서 작성으로 배출, 운반, 처리, 재활용양에 대한 과정이 명확해지며 위성항법장치를 이용한 운반경로 확인 및 액비살포에 대한 적정성 여부 파악 가능

117) 가축분뇨의 배출부터 수집·운반 및 최종처리까지 인계·인수내용을 전자정보화하여 가축분뇨의 처리과정을 효율적이고 투명하게 관리하기 위하여 전자인계시스템을 도입하고자 「가축분뇨의 관리 및 이용에 관한 법률」제37조의2 및 제37조의3 신설하였으며, ’17년부터 돼지 분뇨 및 액비를 대상으로 전자인계관리시스템 적용. 참고자료 2-4-7
나. 주요대책

- 토양투입 양분 및 가축분뇨의 환경영향평가 정밀조사 실행
- 양분관리제 도입
- 자원화 중심의 가축분뇨공공처리시설 확충
- 개발농가의 가축분뇨 관리를 산업폐수 수준으로 강화
- 가축분뇨 전자인계관리시스템 구축 및 적용대상 확대

토양 투입 양분 및 가축분뇨의 환경영향평가 정밀조사 실행
- 과학적이며 신뢰할 수 있는 양분수지 지표 산출
 - 토양으로 투입되는 다양한 양분(영양물질118)) 출처를 고려하여 우리나라 농업특성을 반영한 정확한 배개변수를 산출하여 양분수지 산정
- 가축분뇨 정밀실태조사 체계 구축
 - 가축분뇨에 의한 환경오염 원인 규명과 대책 수립을 위하여 조사대상 지역에 대한 개황조사 이후 정밀조사를 실시하는 모니터링 체계 구축

조사계획수립 → 가축분뇨실태 개황조사 → 정밀조사 대상여부 판단

<table>
<thead>
<tr>
<th>조사계획수립</th>
<th>가축분뇨실태 개황조사</th>
<th>정밀조사 대상여부 판단</th>
<th>NO</th>
<th>가축분뇨실태조사 결과보고</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

↑ Yes

가축분뇨실태 정밀조사 계획수립

<table>
<thead>
<tr>
<th>가축분뇨실태 정밀조사 계획수립</th>
<th>정밀조사</th>
</tr>
</thead>
</table>

〈그림 2-4-6〉 가축분뇨실태조사 체계 및 절차(안)

- 가축분뇨 정밀조사 대상 판단기준 및 분석기법 개발
- 가축분뇨 실태조사 지침 마련

118) 필요한 데이터 및 매개변수의 정확도도 높아야 하며, 양분 수지를 계산하는 방법 역시 개선해야 한다. 현재 양분관리제는 화학비료와 퇴액비만을 고려하고 있는데, OECD의 경우에는 질소의 경우 대기침전량+콩과식물의 질소고정량, 관계수를 통한 질소유입량까지 모두 고려하고 있다(Gross Nutrient Balance Index). 또한 우리나라는의 경우는 대기침전량이 매우 높기 때문에 이를 반영할 수 있는 영양물질 수질 산정방법도 고도화해야 한다.
토양 양분지수 및 가축분뇨의 수질 및 수생태계의 영향평가 정밀조사 실행

양분관리제 도입

- 양분수지 지표, 수체의 수질, 물이용 용도 및 사용량 등을 고려하여 양분 우선관리 지역 파악
- 우선관리 지역대상으로 양분관리제 시범운영 후 확산 및 정착의 3단계로 점진적으로 추진

자료: 김창길 외, 2015, 양분총량제 도입방안 연구, 한국농촌경제연구원

<그림 2-4-7> 토양영양물질 총량제 정책추진

- 토양 영양물질 감축을 위해 우리나라에 상황에 맞는 최적영농 방안 및 가축분뇨 처리방안 제시
- 이를 농민이 적극적으로 유인 시스템을 설계하고 준수 정도를 파악할 수 있는 상호준수 체계 수립
- 실효성 있는 정책추진을 위해 농림축산부와 부처별 협력방안 마련
자원화 중심의 가축분뇨공공처리시설 확충

- 고체연료화 시설 등 자원화 중심의 가축분뇨 공공처리시설 확충
 - 중소규모 농가의 가축분뇨 적정처리를 위한 공공처리시설 지속 확충을 통해 공공처리율 향상(‘14년 9.2% → ’25년 30.0%)
 - 비점오염원으로 작용하는 가축분뇨 가운데 돼지 외에 소의 분뇨를 처리하기 위한 공공처리시설 설치 지원(10개소이상)
 - 통합관리시설(바이오, 정화, 퇴비·액비 시설 등)과 연계하여 발생부터 처리·이용까지 고려하는 환경순환형 사업 추진(‘14년 2개소 → ’25년 30개소)
 - 바이오가스화시설 등 가축분뇨에너지화시설 설치 확대(‘13년 10개소→ ’25년 20개소)

[그림 2-4-8] 가축분뇨 처리 개념도

- 퇴비액비화기준 검사항목 확대 및 기준강화, 항생제 검사방법 마련
- 농축부 공동자원화센터와 환경부 공공처리시설 연계 운용시스템 구축
 - 중외투자 방지를 위해 환경부·농식품부 간 사업 지원내역 공유 및 중복 사업을 제외한 예산이 반영되도록 협조 추진
- 시·군의 환경과-축산과 간 가축분뇨 중복처리 확인방안 마련 검토

» 주민가피시설인 공공처리시설 사업 추진 시 민원에 따라 사업이 지연되지 않도록 주민의견을 수렴하는 부지선정 가이드라인 검토
- 사업추진 계획단계부터 주민 공청회, 의견수렴 절차 등을 수행함으로써 민원 없는 최적의 부지 확보

□ 개별농가의 가축분뇨 관리를 산업폐수 수준으로 강화

» 방류수수질기준 ’19년까지 단계적 강화
- 특정지역 신고대상의 경우 T-N : 850 → 500mg/L(’16.1) → 250mg/L(’19.1), T-P : 200 → 100mg/L(’13.1)

» 방류수수질기준에 TOC 항목 추가 및 적산전력계, 적산유량계 설치 등을 검토하기 위한 현장 조사

□ 가축분뇨 전자인계관리시스템 구축 및 적용대상 확대방안 검토

» GPS 등 수집·운반·살포차량에 장비설치 등 기반을 구축·운영

» 가축분뇨 전자인계관리 대상을 돼지 및 액비에서 말·젖소·소 등 가축 및 퇴비로 적용 확대 검토

다. 향후 추진 일정

» 양분수지 현황 조사 및 가축분뇨의 환경영향평가 정밀조사 시행(’16∼’18)

» 양분관리제도 도입
- 지역별 양분관리제 기준마련(’17)
- 양분관리제 확대 시행 및 프로그램 보완 및 수정(’18∼’20)
- 스마트 양분관리 구축 및 양분관리제 정착(’21∼’25)
가축분뇨 관리 선진화
- 자원화 중심의 가축분뇨공공처리시설 확충(’25)
- 개별농가의 가축분뇨 관리를 산업폐수 수준으로 강화(’25)
- 가축분뇨 전자인계시스템 구축(’16) 및 적용대상 확대(’24~)

참고자료 2-4-1119)

◈ 국내 양분수지 현황
○ 광역시를 제외한 시군 행정지역 155개를 대상으로 전국 농경지에 대한 시군별 양분수지 분석 결과, 특별관리지역의 비중이 높게 나타남
○ 전국 시군별 양분수지 현황(’14년 기준)

<table>
<thead>
<tr>
<th>구분</th>
<th>지역수(개)</th>
<th>비중(%)</th>
<th>지역수(개)</th>
<th>비중(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>우수지역</td>
<td>20</td>
<td>12.9</td>
<td>33</td>
<td>21.3</td>
</tr>
<tr>
<td>관심지역</td>
<td>29</td>
<td>18.7</td>
<td>22</td>
<td>14.2</td>
</tr>
<tr>
<td>유도지역</td>
<td>47</td>
<td>30.3</td>
<td>40</td>
<td>25.8</td>
</tr>
<tr>
<td>특별관리 지역</td>
<td>25</td>
<td>16.1</td>
<td>19</td>
<td>12.3</td>
</tr>
<tr>
<td>특별관리 II지역</td>
<td>34</td>
<td>21.9</td>
<td>41</td>
<td>26.5</td>
</tr>
<tr>
<td>합계</td>
<td>155</td>
<td>100.0</td>
<td>155</td>
<td>100.0</td>
</tr>
</tbody>
</table>

자료: 김창길 외, 2015, 양분총량제 도입방안 연구, 한국농촌경제연구원

119) 김창길 외, 2015
<table>
<thead>
<tr>
<th>구분</th>
<th>조사항목</th>
<th>조사방법</th>
<th>조사주기</th>
</tr>
</thead>
<tbody>
<tr>
<td>축산현황</td>
<td>가축사육현황</td>
<td>서면조사, 현장조사</td>
<td>1회/연 이상</td>
</tr>
<tr>
<td></td>
<td>가축분뇨현황</td>
<td>서면조사, 현장조사, 시료채취 및 시료분석</td>
<td>1회/연 이상</td>
</tr>
<tr>
<td></td>
<td>작목별 퇴비·액비 및 보통비료의 수급현황</td>
<td>서면조사, 현장조사</td>
<td>4회/연, 1회/분기</td>
</tr>
<tr>
<td></td>
<td>퇴비·액비 및 보통비료의 살포현황</td>
<td>서면조사, 현장조사</td>
<td>1회/연 이상</td>
</tr>
<tr>
<td></td>
<td>보통비료 성상</td>
<td>시료채취 및 시료분석 ('비료관리법 시행령' 제15조에 따른 품질검사 방법 등)</td>
<td>1회 이상</td>
</tr>
<tr>
<td></td>
<td>퇴비·액비 성상</td>
<td>시료채취 및 시료분석 ('비료관리법 시행령' 제15조에 따른 품질검사 방법 등)</td>
<td>1회 이상</td>
</tr>
<tr>
<td></td>
<td>작물의 양분소비도</td>
<td>서면조사, 현장조사, 시료채취 및 시료분석 (농림축산식품부 장관이 인정하는 방법 적용)</td>
<td>1회 이상</td>
</tr>
<tr>
<td></td>
<td>토양</td>
<td>시료채취 및 시료분석 (토양오염정정보이준기준)</td>
<td>2회 이상</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>구분</th>
<th>조사항목</th>
<th>조사방법</th>
<th>조사주기</th>
</tr>
</thead>
<tbody>
<tr>
<td>환경오염현황</td>
<td>수온, 전기전도도, pH, DO, BOD, COD, SS, 황산화수소, T-N, NO3-NO2-N, NH3-N, T-P, NO3-P, Ni, Cu, Zn, As, Cd, Pb, Hg, Cr6+, 전류항생물질 등</td>
<td>시료채취 및 시료분석 (수질오염정정보이준기준)</td>
<td>1회/월</td>
</tr>
<tr>
<td>지하수</td>
<td>현장항문수온, 전기전도도, pH, DO, COD, SS, 황산화수소, T-N, NO3-NO2-N, NH3-N, T-P, NO3-P, Ni, Cu, Zn, As, Cd, Pb, Hg, Cr6+, 전류항생물질 등</td>
<td>시료채취 및 시료분석 (수질오염정정보이준기준)</td>
<td>4회/연, 1회/분기</td>
</tr>
<tr>
<td>토양</td>
<td>Cd, Cu, Zn, Ni, As, Pb, Cr6+, Hg 등</td>
<td>시료채취 및 시료분석 (토양오염정정보이준기준)</td>
<td>4회/연, 1회/분기</td>
</tr>
<tr>
<td>악취</td>
<td>복합약취, 지정약취물질(암모니아, 황화수소, 메틸메르캅탄, 아세트알데히드 등)</td>
<td>시료채취 및 시료분석 (악취공정정보이준기준)</td>
<td>4회/연, 1회/분기</td>
</tr>
</tbody>
</table>

비고: 위 항목은 「가축분뇨의 관리 및 이용에 관한 법률」 시행령 제4조제1항의2 규정에 의한 오염물질 중 가축분뇨실태조사 시 우선 조사항목으로 지정될 수 있는 항목으로서 환경오염상태 등을 반영하여 변경될 수 있음.
참고자료 2-4-3

가축분뇨 처리 현황

(단위: 천톤, %)

<table>
<thead>
<tr>
<th>연도</th>
<th>발생량</th>
<th>자원화</th>
<th>정화방류</th>
<th>해양투기</th>
<th>기타</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>소계</td>
<td>퇴비</td>
<td>액비</td>
<td>개별처리</td>
<td>공공처리장</td>
</tr>
<tr>
<td>'06</td>
<td>40,255 (100)</td>
<td>33,298 (82.7)</td>
<td>31,998 (79.5)</td>
<td>1,300 (3.2)</td>
<td>870 (2.2)</td>
</tr>
<tr>
<td>'08</td>
<td>41,743 (100)</td>
<td>35,208 (84.3)</td>
<td>32,912 (78.8)</td>
<td>2,295 (5.5)</td>
<td>1,184 (2.8)</td>
</tr>
<tr>
<td>'10</td>
<td>46,534 (100)</td>
<td>40,286 (86.6)</td>
<td>37,220 (80.0)</td>
<td>3,066 (6.6)</td>
<td>1,427 (3.1)</td>
</tr>
<tr>
<td>'11</td>
<td>42,685 (100)</td>
<td>37,396 (87.6)</td>
<td>34,393 (80.6)</td>
<td>3,003 (7.0)</td>
<td>1,527 (3.6)</td>
</tr>
<tr>
<td>'12</td>
<td>46,489 (100)</td>
<td>41,236 (88.7)</td>
<td>37,656 (81.0)</td>
<td>3,580 (7.7)</td>
<td>1,999 (4.3)</td>
</tr>
</tbody>
</table>

자료: 농림축산식품부, 2013, 중장기 가축분뇨 자원화 대책

참고자료 2-4-4

가축분뇨공공처리시설 설치 현황(14년12월)

(단위: 개, 톤/일)

<table>
<thead>
<tr>
<th></th>
<th>전 체</th>
<th>정화</th>
<th>에너지화</th>
<th>액비</th>
<th>퇴비</th>
<th>평균 가동률</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>개소</td>
<td>용량</td>
<td>개소</td>
<td>용량</td>
<td>개소</td>
<td>용량</td>
</tr>
<tr>
<td>계</td>
<td>94</td>
<td>11,476</td>
<td>87</td>
<td>11,016</td>
<td>1개, 130톤</td>
<td>4개, 210톤</td>
</tr>
<tr>
<td>인천</td>
<td>2</td>
<td>60</td>
<td>1</td>
<td>30</td>
<td>1개, 30톤</td>
<td>141%</td>
</tr>
<tr>
<td>세종</td>
<td>1</td>
<td>120</td>
<td>1</td>
<td>120</td>
<td>77%</td>
<td></td>
</tr>
<tr>
<td>경기</td>
<td>18</td>
<td>2,510</td>
<td>16</td>
<td>2,360</td>
<td>2개, 150톤</td>
<td>89%</td>
</tr>
<tr>
<td>강원</td>
<td>5</td>
<td>800</td>
<td>5</td>
<td>770</td>
<td>1개, 30톤</td>
<td>78%</td>
</tr>
<tr>
<td>충북</td>
<td>5</td>
<td>490</td>
<td>5</td>
<td>490</td>
<td>74%</td>
<td></td>
</tr>
<tr>
<td>충남</td>
<td>9</td>
<td>1,383</td>
<td>9</td>
<td>1,383</td>
<td>89%</td>
<td></td>
</tr>
<tr>
<td>전북</td>
<td>13</td>
<td>1,875</td>
<td>12</td>
<td>1,825</td>
<td>1개, 50톤</td>
<td>81%</td>
</tr>
<tr>
<td>전남</td>
<td>11</td>
<td>1,040</td>
<td>10</td>
<td>1,010</td>
<td>1개, 30톤</td>
<td>77%</td>
</tr>
<tr>
<td>경북</td>
<td>14</td>
<td>1,290</td>
<td>13</td>
<td>1,250</td>
<td>1개, 40톤</td>
<td>89%</td>
</tr>
<tr>
<td>경 남</td>
<td>14</td>
<td>1,508</td>
<td>13</td>
<td>1,378</td>
<td>1개, 130톤</td>
<td>110%</td>
</tr>
<tr>
<td>제주</td>
<td>2</td>
<td>400</td>
<td>2</td>
<td>400</td>
<td>64%</td>
<td></td>
</tr>
</tbody>
</table>
바이오가스화시설 설치 현황

<table>
<thead>
<tr>
<th>지역</th>
<th>시설용량</th>
<th>사업 기간</th>
<th>예산(백만원)</th>
<th>추진 상황</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>11개소, 1,233톤/일</td>
<td>'09~'13 161,856 127,685 24,305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>양산시</td>
<td>130톤/일 (가축 70, 음식물 60)</td>
<td>'09~'13 19,907 15,926 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>홍천군</td>
<td>100톤/일 (가축 80, 음폐수 20)</td>
<td>'12~'14 18,200 14,560 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>논산시</td>
<td>150톤/일 (가축 110, 음식물 30, 축산부산물 10)</td>
<td>'12~'16 18,000 12,600 2,800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>고흥군</td>
<td>90톤/일 (가축 80, 음식물 10)</td>
<td>'13~'15 8,679 6,943 2,576</td>
<td></td>
<td></td>
</tr>
<tr>
<td>울진군</td>
<td>60톤/일 (가축 30, 음폐수 25, 분뇨 5)</td>
<td>'13~'16 9,070 7,256 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>철원군</td>
<td>50톤/일 (가축 20)</td>
<td>'14~'16 6,500 5,200 2,350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>사산시</td>
<td>130톤/일 (가축 100, 음식물 30)</td>
<td>'14~'16 19,000 15,200 7,199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>제주시</td>
<td>200톤/일 (가축 200)</td>
<td>'14~'16 21,200 16,960 8,080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>금산군</td>
<td>100톤/일 (가축 76, 음식물 10, 하수슬러지 14)</td>
<td>'15~'18 13,000 10,400 300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>양평군</td>
<td>98톤/일 (가축 87.2, 음식물 8.3, 생선부산물 2.5)</td>
<td>'15~'17 12,700 10,160 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>김제시</td>
<td>120톤/일 (가축 80, 음식물 25, 동물성 15)</td>
<td>'15~'18 15,600 12,480 500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

가축분뇨 자원화시설 설치 현황

<table>
<thead>
<tr>
<th>지역</th>
<th>시설용량</th>
<th>사업 기간</th>
<th>예산(백만원)</th>
<th>추진 상황</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>7개소, 765톤/일</td>
<td>'12~' 84,888 60,048 1,154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>화성시</td>
<td>120톤/일(퇴비)</td>
<td>'12~' 18,000 12,600 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>정읍시</td>
<td>95톤/일(퇴비)</td>
<td>'13~' 8,828 6,180 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>김천시</td>
<td>40톤/일(퇴비)</td>
<td>'11~' 6,260 5,008 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>상주시</td>
<td>120톤/일(퇴비,100, 액비20)</td>
<td>'13~' 13,200 9,240 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>여주시</td>
<td>120톤/일(퇴비)</td>
<td>'15~' 11,600 8,120 300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>파주시</td>
<td>70톤/일(퇴비)</td>
<td>'15~' 7,000 4,900 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>천안시</td>
<td>200톤/일(퇴비)</td>
<td>'15~' 20,000 14,000 354</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
참고자료 2-4-7

- 가축분뇨 전자인계관리시스템 구성도

○ 추진 체계

<table>
<thead>
<tr>
<th>주관 기관</th>
<th>환경부(유역총량과)</th>
</tr>
</thead>
<tbody>
<tr>
<td>민간 업체</td>
<td>가축분뇨 배출/운반/처리업체</td>
</tr>
<tr>
<td>추진 기관</td>
<td>한국환경공단</td>
</tr>
<tr>
<td>운영 기관</td>
<td>농식품부, 지자체</td>
</tr>
</tbody>
</table>

- (환경부) 통합 정보 관리 및 정책 수립 실행 등
- (지자체) 정보관리 및 모니터링, 지도단속 자료 확보
- (축산농가, 운반처리업자) 전자인계서, 자가처리 내용 작성
- (농림축산식품부) 방역관리시스템의 정보 공유 협의

○ 업무처리도

1 배출 (배출농가)

2 수집/운반

3 처리(공공처리시설,재활용업체)

4 액비/납포

△ 보俺담 전송장치
△ GPS
△ 형성량차
△ 응용정보

(가축분뇨 수집운반차량에 부착되는 정보기기)
국외 사례 2-4-1

◆ 미국의 연방정부 차원에서 양분관리를 위해 농림부(USDA)와 환경청(U.S EPA)이 함께 「가축사육을 위한 국가전략」을 공동 제정
 ○ 모든 가축사육시설은 수질에 대한 악영향을 저감하기 위한 사육관리, 분뇨처리 및 저장, 농경지의 분뇨사용, 자료보관 등에 관한 종합영양물질관리계획(Comprehensive Nutrient Management Plan, CNMP)을 수립 및 실행

◆ 팬실베니아 주의 경우 Chesapeake Bay의 TMDL의 달성을 위해 미국에서 처음으로 농업비점 오염원과 하수처리시설(점오염원)이 모두 참여하는 영양물질크레딧거래 (Nutrient Credit Trading) 프로그램을 운영
 ○ 영양물질크레딧 거래는 보통 NPDES 배출 기준을 맞추어야 하는 시설들이 농지소유주들이 영양물질관리를 통해 발생된 크레딧을 구입하는 방식
 ○ 농지소유주들은 영양물질 감소를 위한 최적기법사용(BMP), 분뇨 영양물질 제거 및 전환 기술 사양, 가급류의 분뇨 수출 및 Chesapeake 유역 밖에 퇴액비 사용 등을 통해 크레딧을 모음

◆ 유럽의 경우 질소 및 인의 농경지로부터 유출을 막기 위해 농업의 영양물질관리에 관한 「영양물질관리법규」를 제정하여 회원국의 영양물질을 규제
 ○ 물관리지침(Water Framework Directive, WFD), 지하수처리지침(GroundWater Directive, GWD), 특히 질산염지침(Nitrate Directive)을 통해 농업행위에 따른 영양물질 관리를 강제적으로 하고 있었음120)
 ○ 또한, 공동농업정책(CAP) 개정으로 모법영농기법을 적용하고 농업 보조금 수여 및 '상호준수(cross compliance)'를 통해 미준수시 보조금 회수 및 지급중단
 ○ 기타 선진국의 양분관리 현황은 표1-4121)와 같음

120) 질산염 지침에 따르면 농민들이 자발적으로 구현할 질소균형시비, 바람직한 농업관행 규정을 수립하고, 질산염 취약 지구 지정하여 질소시비 억제를 포함하여 취약지구 내 의무적 수단을 포함하는 활동 프로그램 수립 등을 제시한다. 이에 대한 이유는 기존은 지하수 및 표층수 내 질산염의 농도가 50mg/l을 미치어야 하고 표층수의 부영양화 상태로 설명하고 있다 (김창길 외, 2015)
121) 김창길 외, 2015
외국의 양분관리 현황

<table>
<thead>
<tr>
<th>국가</th>
<th>주요 특징</th>
<th>국내 적용 시사점</th>
</tr>
</thead>
<tbody>
<tr>
<td>미국</td>
<td>• 농경지에 적물양분 요구량 만큼의 양분투입
• 시장지향적 양분 크레딧 제도 운영
※ 양분 크레딧(Nutrient Credit Trading) 오염원 배출 할당량 거래
• 축산분야의 종합양분관리계획 실천</td>
<td>• 직물요구량 수준의 양분투입 기준 활용
• 양분크레딧 제도를 미래 양분 관리방안으로 검토
• 축산분야 하기대상 이상의 종합양분관리 연계 방안 검토</td>
</tr>
<tr>
<td>캐나다</td>
<td>• 양분요구량 기준 양분투입 (양분수지 방정식 활용)
• 4R(적정한 비료원, 적정한 비율, 적정한 시간, 적정한 위치 등)의 적정양분관리 지침 활용
• 양분관리전략과 양분관리계획 활용</td>
<td>• 양분투입 기준 제시에 양분 지정관리 활용 검토
• 4R 양분관리지침을 미래 양분관리방안 활용 검토
• 양분관리전략과 계획을 양분관리종합대책 마련시 활용 검토</td>
</tr>
<tr>
<td>EU</td>
<td>• 잉여양분 관리를 위해 유럽국가 양분관리법규 적용
• 철도지침을 통하여 농경지 양분투입 상한선 설정 관리</td>
<td>• 잉여양분 관리의 법적제도적 기반 구축시 기초자료 활용
• 잉여양분관리방안으로 상한성 설정 방안으로 활용 검토</td>
</tr>
<tr>
<td>덴마크</td>
<td>• 가축분뇨와 비료를 대상으로 강력한 규제정책 적용
• 비료투입의 철저한 관리시스템 구축</td>
<td>• 가축분뇨 특권의 대책 마련시 기초자료로 활용
• 양분투입 모니터링 방안 모색시 활용</td>
</tr>
<tr>
<td>네덜란드</td>
<td>• 가축분뇨 관리의 기반 {'135': '도양산정제도(Mineral Accounting System, MINAS)'}
• 가축분뇨와 비료를 위한 단개적 조치 추진
• 양여양분관리를 위한 특단의 조치로 MINAS 추진
※ 무기물산정제도(Mineral Accounting System, MINAS) 농가단위 양분(가축분뇨, 화학비료) 산정 및 관리
• 양분투입 상한선 설정의 규제중심 정책으로 전환</td>
<td>• 가축분뇨 관리의 법적제도적 기반 구축시 기초자료 활용
• 가축분뇨 관리의 투명성 수준을 위한 단개적 추진방안 활용
• 미래 양분관리방안으로 MINAS 활용 검토</td>
</tr>
<tr>
<td>벨기에</td>
<td>• 고정시스템과 양분수지시스템이 두 가지 가운데 선택
• 가축분뇨 운행 운영</td>
<td>• 신축적인 양분관리방안 모색시 기초자료로 활용
• 가축분뇨의 효율적 관리를 위해 가축분뇨운행 검토</td>
</tr>
</tbody>
</table>
2-5. 경제적 유인책을 활용한 사전예방적 비점오염원 관리

가. 현황 및 문제점

- 비점오염원에 의한 수질영향이 증가함에 따라 ’04년부터 정부주도로 다양한 정책들이 추진 중이나 여전히 비점오염원 비중은 증가 추세
 - ’10년 전국 수계로 배출오염원 중 비점오염원이 차지하는 비율은 68.3%(BOD 기준) 이며 ’20년 72%까지 증가할 것으로 전망

 점오염원과 비점오염원의 발생부하량 비율의 현황 및 전망

자료: 제2차 비점오염원관리 종합대책(125)

- 관계부처협동으로 제1차(’04~’11), 제2차(’12~’20) 비점오염원관리종합 대책을 수립하고 환경부는 비점오염원 설치신고 제도, 비점오염원 관리 지역 지정, 비점오염저감시설 설치 시범사업, 국고보조사업 시행 등으로 비점오염원 관리 수행

122) 일정규모 이상 개발사업 및 폐수배출시설 설치 사업자 대상에게 비점오염저감 저감시설을 설치, 운영 관리 의무화한 제도로, 제도대입 이후 총 약 2,230개소 신고(‘08~’14년)
123) 비점오염원으로 인해 중대한 위해가 발생 또는 발생 우려가 있는 지역, 현재 도양호, 광주수원시, 세안금호지천 유역 등 5개소 지정관리 중
124) 비점오염저감기술 검증, 시설 효율 정량화, 설치 및 유지관리기준 마련하기 위해 ’04~’15년 47개 시범사업 운영 완료
125) ’08년 이후 지속적인 국고보조사업 추진중이며 ’15년 61개사업 약 560억원 지원, 추진중
- 하지만, 중앙정부 주도의 비점정책은 시설물 설치 위주 등 사전예방 관리 전략 부족, 지자체 및 국민의 비점관리 책임의식 및 참여 저조, 비점시설 설치 및 사업 이후 유지관리 부족, 비점사업 예산 부족 등의 문제점들이 존재

오염원그룹별 배출부하량 분석결과 토지계\(^{126}\)(BOD 63.5%, T-P 57.5% 차지)의 관리가 핵심이나, 기존 정책들은 발생원 단계에서 비점오염원 유출을 지감하는 사전예방 전략들이 미흡

오염원그룹별 배출부하량 분석결과 토지계\(^{126}\)(BOD 63.5%, T-P 57.5% 차지)의 관리가 핵심이나, 기존 정책들은 발생원 단계에서 비점오염원 유출을 지감하는 사전예방 전략들이 미흡

![토지계 BOD, T-P 분석](https://example.com/biochemical Oxygen Demand, Total Phosphorus)

지료: 제2차 비점오염원관리 종합대책(12.5)

〈그림 2-5-2〉 2010년 오염원그룹별 비점 배출부하량

- 토지계의 관리가능한 지역은 전·담(농촌)과 대지(도시)로 면적비율은 23%\(^{127}\)에 불가하나 발생부하량(BOD 기준)\(^{128}\) 비율은 91%에 해당하여 우선적으로 사전예방 관리가 필요
- 즉, 농촌과 도시의 토지개발 및 이용주체에게 비점오염관리에 대한 책임을 부여할 수 있는 제도적 기반을 마련하는 것이 시급

\(^{126}\) 토지계 비점오염원에 해당하는 환경기초시설 미유입 개별배출수와 토지계 관개권수수(분류식 하수관개 합류수+합류식 하수관개 합류수)가 있음

\(^{127}\) 전국토(109,023㎢)에서 임야(64,337㎢)와 수계등 기타(8,270㎢)를 제외

\(^{128}\) 발생부하량(BOD): 대지 674톤/일, 임야 기타 68톤/일 (전체 742톤/일)
하지만 사유지의 경우 비점오염원 관리를 강제할 수 없으므로 보상을 수반하는 환경책임을 부과하여 토지 소유·이용자의 참여를 유도하는 것이 필요 한다.

도시 및 농촌 지역 등에서 토지 소유·사용자 참여가 어려운 상황

- (도시지역) 기후변화에 따른 우수관리비용 상승에 의한 재원부족과 도시 강우유출수(stormwater)의 직접규제 어려움
 - 기후변화에 따른 강우패턴 변화는 도시내 침수, 건천화, 우수관 설치비용 증가 등 강우유출관리 비용 증가하여 비점오염원관리에 부담

자료: 환경부, 한국환경공단, 2012.11, 2050 하수도정책비전 마련을 위한 연구

〈그림 2-5-3〉침수예방 우수관리 사업예산

129) 헌법재판소는 헌법상 재산권은 토지소유자가 이용가능한 모든 용도로 토지를 자유로이 사용할 수 있는 권리와 가장 경제적 또는 효율적으로 사용할 수 있는 권리를 보장하는 것을 의미하지는 않는다고 하면서 입법자는 중요한 공익상의 이유로 토지를 일정 용도로 사용하는 권리를 제한할 수 있다고 보았다. (구지선, 2012)
기존 토지이용 규정\(^{130}\)에 더해 불투수면 관리의무를 개인 토지 소유·이용자에게 부여하는 것은 재산권이 과도하게 침해될 소지

- (농촌지역) 최적관리 영농기준 및 행위규제 미설정과 교차준수 보조금 제도 미비

- 현재 농촌부문의 비점관리를 위한 규제적 수단\(^{131}\)은 매우 제약적이며, 대부분 정부의 시범사업과 보조금 지급에 한정, 영농 기술지원 등 다양 한 수단이 활용되지 못하고 있음

- 농림부의 토지이용·수질 관련 지원사업 예산경우 전체 예산의 2.5% 밖에 되지 않으며 ’12이후 예산 감소 추세임(3,656억원(’12)→3,386억원(’14))

- 농업 직접급여 또는 보조금의 경우 수여 이후 요구조건이나 이행사항 확인이 담보되지 않으므로, 친환경농업 직접급여제의 경우 이행점검 항목이 농축산물의 품질에 관한 사항으로 비점오염원 관리 등의 항목은 포함되어 있지 않아 수질개선의 효과를 담보하기 어려움\(^{132}\)

- (고랭지밭) 농민들의 자발적 저감 제도의 구체적인 가이드라인 미비

- 제2차 비점오염관리종합대책에서 ‘고랭지 경작지 흙탕물저감사업’을 채택하여 지속 추진 중이나 경작자의 인식과 관심은 여전히 부족한 실정

- 농민이 자발적으로 비점오염을 저감할 수 있는 제도적 기를 마련을 제안 하였지만\(^{133}\) 구체적인 가이드라인이 미비

\(^{130}\) 지자체가 도시계획을 수립하고 토지이용계획의 용도지역을 규정할 때에 건축물에 대한 건폐율, 녹지율, 주거밀도 등을 정하며 현재 도시, 산업농공단지, 관광단지의 개발에 생태면적표를 적용하고 있으며 환경부는 지역별로 불투수면의 적정 관리목표 및 지표를 개발하는 연구를 추진 중이다.(국립환경과학원, 2014)

\(^{131}\) 환경부의 경우 농촌부문 비점관리 규제수단은 수질오염총량관리제도, 공공수역 다량토사유출 금지, 비점오염관리지역지정 제도가 있으며, 농축식물품의 경우는 농지전용허가(농지개량 및 농지전용허가)와 농지보전부담금 뿐

\(^{132}\) 친환경농업 직접급여제의 경우, 이행사항 및 사후관리를 점검하도록 하여, 대상자 선정 후 먼저 이행점검을 한 후 보조금을 지급하고, 지급 후에도 기존 위반 시 회수하도록 하고 있다. 그러나 이행점검 항목은 비대상작물제외, 잔류 농약 검사 등 ‘농축산물의 품질’에 관한 것으로 비점오염원 관리 등 수질관리를 위한 항목은 포함되어 있지 않다

\(^{133}\) 현행 법령으로는 ‘수질 및 수생태계 보전에 관한 법률’ 제59조는 고랭지 경작지에 대한 경작방법을 권고할 수 있고 경작지에 손상이 발생한 경우에는 지자체장으로 하여금 손실을 보상하도록 규정하고 있지만 보상금을 지방 비로 부담하는 것은 현실적으로 많은 어려움이 있다.
나. 주요대책

- (추진방향) 합리적 수준의 비점오염원 관리 책임 규정과 보상
- (도시지역) 강우수출수 요금제 도입
- (농촌지역) 현행 지원제도 기반 교차주요사항 개선 및 강화
- (고랭지역) 현행 지원제도 개선 및 최소수의 의무조항 설정

- (도시지역) 강우수출수 요금제 도입 및 공공소유 불투수면 관리 의무화
 - 강우수출수 요금제 도입을 통한 도시 내 비점관리 재원 마련 및 인센티브 제공하여 지명한 지명개발(LID)/그린비트물인프라(GSI) 투수층 확장유도
 - 강우수출수 요금제134): 강우수출수 관리비용을 강우 수출수 기여도, 즉 소유·이용하는 토지의 불투수면에 따라 토지소유·이용자로부터 요금을 통해 회수하는 제도
 - 신규개발사업이나 기존의 토지이용·사용자가 자발적으로 투수층을 증가하는 LID/GSI 기법을 활용할 때 요금을 면제하는 방식으로 운영
 - 공공소유 토지 및 도로의 불투수면 관리 의무화
 - 민간의 토지소유이용자에 LID/GSI의 적용을 의무화하는 것은 재산권을 심각하게 침해할 우려가 있기 때문에, 법 개정을 통해 공공소유의 토지 또는 공공주진 개발사업에 대해서 LID/GSI 최우선으로 고려하도록 관련된

134) 강우수출수 관리의 책임은 공공에 있더라도 그 비용은 원인자 부담원칙 또는 수혜자 부담원칙에 따라 토지소유·이용자에게 부담시키는 것
계획설계·기준 강화, 볼투수면의 관리의무를 부여]
- 그린빗물인프라 조성사업의 대상 확대를 통하여 공공청사 외에도 이미 조성된 부지나 건물의 우수 배재방법이 개선
- 강우유출수에 의한 수질오염이 심각한 도시 지역의 신규/기존의 도로에 대해 LID/GSI의 적용 의무화를 위한 법률개정

(농촌지역) 현행 지원제도 기반 교차준수 요건 개선 및 강화
- 현행 제도를 기반으로 환경개선에 기여하는 특정 토지이용(영농) 방식을 수립하고 교차준수 체계를 활용하여 보조금을 지불하는 방식개편
- 영농기법의 물환경 영향을 고려한 한국형 최적영농기법 개발 및 수립
- 자발적인 참여자에게 교차준수를 조건으로 보조금을 지급하는 제도 수립, 우선 수질 민감지역에서 시범사업 시행하고 그 결과를 바탕으로 다른 지역까지 확대 적용
 - 선택 가능한 최적영농기법(BMP)과 연계된 보조금 유형·수준에 따른 BMP 수용 확률 및 효과 분석 결과를 기반으로 교차준수제도를 도입
 - 환경영향을 고려한 이행점검 항목을 수립하여 교차준수에 대한 이행점검 및 제재조치 수행
- 보조금만으로는 이행을 담보할 수 없기 때문에 환경오염을 유발하는 영농행위(농약 및 비료사용 규정)에 대해서는 환경영향을 고려한 기준 재설정 등 현행 의무규정을 개선·강화

135) 도시의 경우 국가,지자체, 공공기관이 소유한 토지와 건물의 비율이 높음. 특히 공공기관이 밀집된 혁신도시나 세종 특별자치시에서 LID/GSI의 적용이 활발히 도입될 수 있음
136) 비점오염원관리지역, 상수원보호구역 등
137) 현재 비점오염원 저감에 기여하는 농업기법으로의 자발적 전환을 유도하는 농업보조금 지원제도 도입을 위한 타당성 조사 연구 추진 중. 농촌 비점오염원 저감을 위한 농업보조금 지원 타당성 조사 연구(환경부,2015)
138) 현재 농약 및 비료사용 기준 등이 마련되어 농지전용허가와 하천점용허가 시 검토하거나 하천 구역 등 수질관리가 중요한 특정 지역에서는 보다 엄격한 기준을 적용하고 있으나 농약관리법상 농약안전사용기준에서는 수확된 농작물을 기준으로 농약 전류량을 규제하고 있을 뿐 환경에 대한 영향을 고려하고 있는 것은 아님
농촌에 시범사업 또는 국고보조사업에 의해 설치된 비점저감 시설에 대해 유지관리 등의 이행여부를 점검 절차 마련, 불이행에 대한 제재 수립

(고랭지밭) 현행 지원제도 개선 및 최소한의 의무조항 설정

수질개선을 위한 작물전환에 따른 손실보상이 법령상 규정되어 있으나 지방비로는 부족하므로 국비와 수계기금으로 지원할 수 있도록 개선

보조금만으로는 이행을 담보할 수 없기 때문에 직접적으로 환경오염을 유발하는 영농행위에 대해서는 최소한의 의무조항을 설정하여 규제

다. 향후 추진 일정

도시 빗물유출수 관리 인센티브 제도 확립(‘~25)

하수도요금제에 강우유출수 요금제 도입(장기)

현행 지원제도 기반 교차준수 요건 개선 및 강화

해안면 지역에는 고랭지 농경지의 면적이 매우 넓으며, 재정자립도가 낮은 강원도와 양구군의 현실을 감안하면 과수정착손실에 대한 보상금을 지방비로 부담하는 것은 현실적으로 많은 어려움이 있다. 따라서 소양강댐 황량물저감

나아가 현장수재의 수질개선 차원에서 시행하는 고랭지 농경지에서의 작물전환에 따른 손실보상은 국비와 수계기금으로 안정적으로 지원할 수 있는 제도가 마련되어야 할 것이다.(강원발전연구원, 2010)
<table>
<thead>
<tr>
<th>제2부</th>
<th>5대 핵심전략별 주요 사례</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>국외 사례 2-5-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>◆ (도시지역) 빗물요금제 확산 및 하수도요금제 개편</td>
</tr>
</tbody>
</table>
| 〇 미국의 경우, 2000년대 이후 비점오염원 관리 위한 녹색기반시설 등 빗물관련 유출저감 재원확보를 위한 빗물세 또는 부과금 징수 등 확대¹⁴⁰⁾
〇 독일은 수도요금의 일정 비율을 받던 우수요금제를 불투수와 연계시키거나 새롭게 토지이용특성을 고려해 요금을 산정 |
| ◆ (농촌지역) EQIP, CRP 등의 인센티브 제도 |
| 〇 미국은 EPA의 CWA 319 제도에 따른 BMP 영농 준수비용 보조금을 지급하며, USDA NRCS의 EQIP(Environmental Quality Incentive Program) 라는 농업활동에 대한 경제적 지원프로그램을 운영
〇 또한, CRP(Conservation Reserve Program)을 비롯하여 다양한 농업 분야 보조금을 지급하고 있음 |
| ◆ (고랭지밭) 침식과 침전물질 규제를 위한 법제와 인센티브 제도 |
| 〇 미국의 경우, 일부 주에 도시지역과 농업지역에서의 토지교란에 의한 침식과 침전물질 규제를 위한 법제가 마련되어 있으나, 농업활동은 대부분의 주에서 제외되고 있음. 대신 환경관련법 등에서 규제를 하고 있거나 인센티브 제도 등을 통해 자발적으로 농민의 참여를 유도¹⁴¹⁾
〇 일본 오카나와현은 농경지에서 발생하는 토사유실 방지 및 탁수를 줄이기 위해 조례를 제정하여 시행하고 있으며 농민들을 대상으로 홍보와 계명활동을 하고 있음. 또한 적절한 인센티브 제를 도입하여 농민들이 자발적으로 참여할 수 있도록 유도 |

<sup>140) 2007년 미국의 635개 지자체에서 빗물요금제가 시행되는 것으로 조사되었으나, 2012년 현재 미국의 약 1314개 지자체에서 빗물요금제가 시행되고 있어, 약 5년 사이에 거의 2배 이상으로 급증하였다.(Campbell, 2012)
141) 소명강댐 흡탕물 저감방안(강원발전연구원, 2007)

해외 비점오염관리를 위한 농촌보조금제도 운영현황\(^2\) 142)

<table>
<thead>
<tr>
<th>국가/지역</th>
<th>보조금 명</th>
<th>관할기관</th>
<th>주요내용</th>
<th>계획수립, 대상자 및 대상지역</th>
<th>교차존수 여부</th>
</tr>
</thead>
</table>
| 미국 | EQIP (Environmenal Quality Incentive Program) | USDA NRCS (농림부 자연보전국) | • 최대 10년 재정적 또는 기술적 지원을 수 있는 자발적 프로그램에 대한 중복신청 불가능
 • 전문가(TSP)를 활용하여 보전활동계획수립(Conservations Activity Plan) 계획 수립할 수 있는 대상자
 • 환경 및 자원문제를 해결할 수 있는 보전 BMP 당 지급
 • 우선대상지역 “Priority Treatment Acre”수혜 가능
 • 농산물생산자, 계약을 통해 농지관리 가능한 자
 • 보호기법 설치비용의 75% 국고보조
 • 연계적, 복합적 보조금 지급 | • 우선관리유역의 핵심관리지역에만 사용가능
 • 총량제(TMDL), USDA 보조금수여지역, 상수원보호구역, 주재 우선유역관리 지역이 우선비점오염원 보조금 지역으로 선정
 • NRC과 같은 전문기관이 정한 특정기준에 준수해야함 | • Highly Erodible Land(HEL) 및 Wetland Conservation (WC) 교차존수 |
| | EQIP | USDA NRCS (농림부 자연보전국) | • BigInteger, 수질, 침식 저해 등의 환경 문제를 자발적으로 해결하려는 농업 생산자에게 재정적, 기술적 지원
 • 지원조합대상: 물관리 구조물이나 경계구조물이 건설하거나 개선하는 행위
 • 각 주의 환경과 적합한 보호기법에 따른 보조금 지급
 • 보호기법 설치비용의 75% 국고보조
 • 연계적, 복합적 보조금 지급
 • 연방작물보험 프로그램 참여가 낮은 16개주
 • 축산업 및 농업 종사하여 연 판매액 1000달러 이상
 • 계약기간 동안 토지에 대한 통제력 보유자 | • 연방작물보험 프로그램 참여가 낮은 16개주
 • 계약기간 동안 토지에 대한 통제력 보유자 | • 법: 7 CFR 1465.25(a)
 • 계약위반시 60일의 기한을 두고 사정조치 권고
 • 위반사항 개선이 되지 않으면 계약 종료 |

142) 환경부, 2016, 농촌 비점오염원 저감을 위한 농업 보조금 지원 타당성 조사 연구
<table>
<thead>
<tr>
<th>국가/지역</th>
<th>보조금 명</th>
<th>관할기관</th>
<th>주요내용</th>
<th>계획수립 및 대상지역</th>
<th>교차준수 여부</th>
</tr>
</thead>
<tbody>
<tr>
<td>미국</td>
<td>Conservation Stewardship Program</td>
<td>DEFRA, (농림부) RPA</td>
<td>• 농업생산자가 현 보존시스템을 유지하고 개선시키고 우선보존자원을 반영하는 추가적인 보전활동을 채택하도록 보조금 지급
• 보전효과 높음수록 더 많은 보조금 지급
• 보조금은 연지급으로 현황을 개선하고 유지하고 관리하는 이행기준으로 보조금 지급하고, 윤직체택하면 보조금을 추가
• 우선보전자원의 비중은 주마다 특성에 맞게 다름</td>
<td>농경지, 목초지, 방목장, 비산업 사유임야, 기타 다른 사유농경지</td>
<td>교차준수</td>
</tr>
<tr>
<td>영국</td>
<td>Basic Payment Scheme (직불금)</td>
<td>DEFRA, (농림부) RPA</td>
<td>• 농지면적당 단일 단가 제공
• 농민 당 150,000유로 초과시 초과금액 5% 식감</td>
<td>농어활동이 이루어지는 모든 농경지
• 최소 5헥타르 이상의 농경지에서 실제 농업활동하는 농민 대상</td>
<td>EU 교차준수</td>
</tr>
<tr>
<td>영국</td>
<td>Country Stewardship, Water Capital Grant</td>
<td>DEFRA, NE(자연국), EA(환경청)</td>
<td>• 보조금 지급 항목별 단가
• 농민당 최대 10,000 파운드
• 신청내역에 따라 점수가 매겨지며 매년 범위내에서 보조금 지급 대상자 선정
• 우점별 관리목적에 따른 보조금 지불 최우선순위 BMP 리스트 존재</td>
<td>우선대상지역(Priority Catchment Target Area)
• 최소 5년동안 관리할 수 있는 경우
• 연간매출액 5000만 유로 또는 총매출 4300만 유로 소득 이하</td>
<td>EU 교차준수</td>
</tr>
</tbody>
</table>
2-6. 호소·하구·연안 지역의 통합관리체계 강화

가. 현황 및 문제점

(호소) 전국에 17,662개의 호소가 있으며 대부분 인공적으로 조성된 호소로서 농업용 저수지가 대부분

- ’15년 주요 호소 49개의 목표기준 달성률(COD 기준)은 8.2%

〈표 2-6-1〉 전국 호소 현황(’13년)

<table>
<thead>
<tr>
<th>계</th>
<th>다목적댐</th>
<th>발전 전용댐</th>
<th>생공용수 전용댐</th>
<th>농업용 저수지</th>
<th>하구호</th>
<th>자연호 (석호)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17,662</td>
<td>17</td>
<td>12</td>
<td>54</td>
<td>17,649</td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>

자료 : 환경부(2016) 환경백서, 국토교통부(2013) 통계로 보는 한국의 수자원

〈표 2-6-2〉 전국 49개 주요호소의 좋은물 및 목표기준 달성도(’11~’15)

<table>
<thead>
<tr>
<th>구분</th>
<th>’11</th>
<th>’12</th>
<th>’13</th>
<th>’14</th>
<th>’15</th>
</tr>
</thead>
<tbody>
<tr>
<td>좋은물 달성 호소수 (달성률, %)</td>
<td>32</td>
<td>33</td>
<td>38</td>
<td>39</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>(65.30)</td>
<td>(67.30)</td>
<td>(77.60)</td>
<td>(79.60)</td>
<td>(65.30)</td>
</tr>
<tr>
<td>목표기준 달성 호소수 (달성률, %)</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(6.10)</td>
<td>(10.20)</td>
<td>(12.20)</td>
<td>(8.20)</td>
<td>(8.20)</td>
</tr>
</tbody>
</table>

* ’15년 좋은물 달성 목표 : 46개(93.90%)
좋은물 달성 기준 COD 4mg/L이하
자료 : 국립환경과학원(2016) 2015년 전국수질평가 보고서

- 호소환경 전반에 대한 조사·측정을 정기적으로 실시하여 호소수질 및 수생태계 관리정책수립을 위한 기초 자료로 활용하도록 하고 있으나143) 여러 기관에서 호수환경에 대한 조사업무를 수행함에 따라 체계적인 조사·관리 미흡한 실정144)

143) 수질 및 수생태계 보전에 관한 법률 제28조에 따라 환경부장관 및 시도지사는 호소의 수질 관리와 수생태계 보전을 위해 1일 취수량 30만톤 이상 또는 관수면적이 0.5㎢ 이상인 호소에 대해 호소수의 이용상황, 수질 및 수생태계 현황, 수질오염원 분포상황 및 수질오염물질 발생량 등을 정기적(매년 또는 3년)으로 조사 및 측정하고 있으며, 조사 결과는 호소수질 관리정책수립을 위한 기초 자료로 활용

144)
(농업용 호소) ’09년부터 농업용 호소의 수질 및 수생태 관리를 위하여 중점 관리 농업용 호소 지정·운영하였다하였음에도 불구하고 수질개선 성과 미흡

- 178개소 중 165개소가 2년 연속 호소의 생활환경기준 약간나쁨(IV) 등급 초과(’14)

〈표 2-6-3〉2년 연속 기준 초과한 중점관리 농업용 호소 현황(’14년)

<table>
<thead>
<tr>
<th>계</th>
<th>부산</th>
<th>대구</th>
<th>인천</th>
<th>광주</th>
<th>대전</th>
<th>울산</th>
<th>세종</th>
<th>경기</th>
<th>강원</th>
<th>충북</th>
<th>충남</th>
<th>전북</th>
<th>전남</th>
<th>경북</th>
<th>경남</th>
</tr>
</thead>
<tbody>
<tr>
<td>개수</td>
<td>165</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td></td>
<td>1</td>
<td>13</td>
<td>7</td>
<td>43</td>
<td>19</td>
<td>28</td>
<td>37</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 수질기준 초과 농업용 시설의 주요염원은 축산계·생활계 증가, 토지계 감소 추세이나 생활하수·가축분뇨를 처리하기 위한 농어촌지역 환경기초시설 부족

〈표 2-6-4〉농업용수 수질기준 초과시설 주요염원 구성비(’04~’13)

<table>
<thead>
<tr>
<th>구분</th>
<th>’04</th>
<th>’05</th>
<th>’06</th>
<th>’07</th>
<th>’08</th>
<th>’09</th>
<th>’10</th>
<th>’11</th>
<th>’12</th>
<th>’13</th>
</tr>
</thead>
<tbody>
<tr>
<td>생활계</td>
<td>60.0</td>
<td>60.5</td>
<td>59.3</td>
<td>47.5</td>
<td>48.2</td>
<td>44.8</td>
<td>34.4</td>
<td>32.5</td>
<td>38.4</td>
<td>42.2</td>
</tr>
<tr>
<td>축산계</td>
<td>32.5</td>
<td>37.0</td>
<td>39.5</td>
<td>42.6</td>
<td>48.2</td>
<td>40.6</td>
<td>45.1</td>
<td>50.0</td>
<td>49.3</td>
<td>48.3</td>
</tr>
<tr>
<td>토지계</td>
<td>7.5</td>
<td>2.5</td>
<td>1.2</td>
<td>9.9</td>
<td>3.6</td>
<td>14.5</td>
<td>19.7</td>
<td>16.7</td>
<td>11.6</td>
<td>9.5</td>
</tr>
</tbody>
</table>

- 하수처리시설 방류수가 유입되는 농업용 저수지는 144개이며 이중 소규모146) 하수처리 방류수 유입 저수지는 129개소이며, 중규모 하수처리 방류수 유입 저수지는 15개소

- 농업용 저수지의 상류에 운영중인 공공하수처리시설은 모두 265개이며, 이중 소규모 시설 247개소가 운영되고 있으며 대부분 마을수도로 생활계오염원을 처리하고 있음

144) 환경부, 2013. 호소환경조사 개선방안 마련을 위한 연구
145) COD, T-N, T-P 중 1개 항목 이상이 ‘약간나쁨’ 기준 초과 시 지정 (근거: 환경정책 기본법 시행령 제2조, 호소의 생활환경기준)
146) 종규모 시설은 하수처리량 500톤/일 이상, 소규모 시설은 500톤/일 미만(자료: 농업용수 수질측정망조사 보고서 (2014, 농림축산식품부, 한국농어촌공사))
- (중점관리저수지) ’12년 수질민원 해소와 생활용수 공급 및 관광·레저 기능 확보 등을 위하여 법 개정을 통해 ‘중점관리저수지 지정·관리 제도’ 도입
(※ 참고자료 2-6-1: 중점관리저수지 지정관리 절차)
 • 경기도 용인 기흥저수지(조류발생, 악취), 의왕 왕송저수지(수질악화), 시흥 물왕저수지(수질개선, 호수공원 추진), 천안 양전저수지(수질개선) 4개소를 중점관리저수지로 지정하여 수질개선사업 추진 중
- (화성호) ’13년에 수립된 화성호(구 화옹호) 수질보전보완대책에 따라 관계 기관별 수질개선사업 추진 중(※ 참고자료 2-6-2: 화성호 수질보전보완대책)
 • ’16년 수질보전보완대책에 대한 중간평가 실시 후 담수화 시기 결정할 예정

〈표 2-6-5〉 화성호 수질 현황(’09∼’13)

<table>
<thead>
<tr>
<th>항목</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD</td>
<td>4.9</td>
<td>7.4</td>
<td>6.0</td>
<td>6.1</td>
<td>6.5</td>
</tr>
<tr>
<td>T-P</td>
<td>0.062</td>
<td>0.073</td>
<td>0.156</td>
<td>0.081</td>
<td>0.092</td>
</tr>
<tr>
<td>해수유통량 (천톤/년)</td>
<td>214,326</td>
<td>188,175</td>
<td>209,510</td>
<td>145,045</td>
<td>180,889</td>
</tr>
</tbody>
</table>

자료: 서울신문(15.03.02), 담수화 돌려싸고 한국농어촌공사-화성시 공밥

○ (새만금호) 새만금호 용도(적극적 친수활동, 농업용수) 등을 고려한 제2단계 수질개선종합대책(’11∼’20)을 수립하여 추진중에 있으며, 상류유역은 가시적인 수질개선 효과가 나타나고 있음(※ 참고자료 2-6-3: 제2단계 수질개선 종합대책)
 • 2단계 수질개선사업은 1차 시기(’11∼’15)에 상류지역에 집중 투자 계획으로 ’15년말 현재 1조 7,599억여원의 예산을 투입, 상류 유역 수질개선147)
○ (하구) 하구는 해수와 담수가 공존하는 지역으로 생태적 문화적 가치가 높은 수역이나 그간 상수원 중심의 수질정책으로 인해 상대적으로 관리의 사각지대에 있었고 지나친 이용·개발로 그 가치 상실

147) 만경강(김제); BOD(mg/L) 5.2(’11) → 4.2(’15), T-P(mg/L) 0.376(’11) → 0.099(’15), 동진강(동진강3); BOD 2.8 → 2.6, T-P 0.159 → 0.074
- 하구 및 하구호의 수질은 약간나쁨(IV)등급을 초과하고 있어 녹조와 악취가 증가함에 따라 시민의 민원이 증가

<그림 2-6-1> 주요 하구호의 최근 5년 연평균 COD 경향

14년 열린하구(20개), 닫힌하구(10개) 총 30개 하구에 대한 건강성 평가한 결과 하구 수생태계 건강성 평가결과 전체 평균 보통(C) 등급
- 양호(B) 8개, 보통(C) 19개, 브랑(D) 3개 하구로 나타남
- 대권역별 동해와 남해, 서해 지역 하구는 평균 보통(C)등급

<table>
<thead>
<tr>
<th>구분</th>
<th>평가등급별 하구 수</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A(최상)</td>
</tr>
<tr>
<td>부착돌말</td>
<td>1</td>
</tr>
<tr>
<td>저서생물</td>
<td>0</td>
</tr>
<tr>
<td>어류</td>
<td>0</td>
</tr>
<tr>
<td>식생</td>
<td>1</td>
</tr>
</tbody>
</table>

- 08년부터 수행된 하구의 수생태계 건강성 조사를 기반으로 혐손이 심한 하구를 우선 선정해 하구 수생태계 복원사업(’13∼’17)과 하구 수

148) 하구수생태복원사업에서는 하구둑 철거, 배수갑물 구조개선 등을 통해 하구의 물순환을 향상하고, 자연호안·범람원 조성, 서식환경 개선 등을 통해 기수역의 하구습지를 복원할 계획
생태계 복원 증량기계획 수립 등 하구의 생태적 가치 회복을 위한 체계적 관리 추진
- 공간적, 기능적으로 각 부처에 하구관련 업무가 분화되어 149) 부처간 연관 사안에 대해서는 관리주체가 애매하여 체계적·통합적 관리가 어려움
- '08년부터 추진되고 있는 하구 수생태계 건강성 조사를 통해 실태를 파악하고 훼손이 심한 하구에 대하여는 복원 추진

나. 주요과제

- 호소 환경 조사평가체계 통합 및 이용 다원화 추진
- 유역기반의 농업용호소 통합관리 기반 구축
- 화성호 및 새만금 수질개선 효율적 추진
- 하천·하구 부유수질 등 환경호 호야 지속육적 추진
- 하구관리법(가칭) 제정 및 하구호 통합관리체계 구축
- 하구·하구호 수질 및 수생태계 조사·평가 및 연구 확대

☐ 하급 단위 조사평가체계 통합 및 이용 다원화 추진

☐ 수질조사 및 수생태계 건강성 조사, 오염원 및 용수사용 변화 등을 포함한 분석·평가방식으로 전환하여 체계적인 호소 관리체계 구축

☐ 환경조사 결과를 토대로 호소별 특성에 맞는 관리대책을 수립하여 이용 목록에 맞는 수질목표설정 및 수질관리 차등화

☐ 유역기반의 농업용호소 통합관리 기반 구축

☐ 중·장기 수질관리기본계획 및 권역별 통합관리 기본계획 수립(농식품부 공동) 후 호소별 단계적 세부관리계획 수립(지자체 및 수면관리자)

※ 한강권역(13개소), 낙동강수계(37개소), 금강수계(29개소), 영산강권역(18개소)
※ 1단계(‘15년, 30개소), 2단계(‘16년, 30개소), 3단계(‘17년, 37개소)

149) 환경부(수질 및 수생태계 보전에 관한 법률), 해수부(연안관리법), 국토부(하천법) 등
수질개선 모니터링, 농경지 등 토지이용개선, 지역주민 참여 개선활동 등을 포함한 농업용보호 통합관리 시범사업 추진

농업용 저수지의 상류의 공공하수처리 시설개선을 통한 저수지 수질개선 도모

- (방류수 수질기준 상향 조정) 농업용수 수질기준 초과 저수지 중 하수처리 시설의 방류수 수질이 저수지 수질 저하의 원인으로 작용하는 비중이 큰 하수처리시설에 대하여는 방류수 수질기준 상향 조정(※ 참고자료 2-6-4: 공공 하수처리시설 방류수 수질기준)

- (방류수 수질개선방안) 오수-우수 분리관제 운영, 총인 처리시설 고도처리 시설 등을 통한 방류수 수질개선

※ (사례1) 경기도 의왕 왕송맑은물처리장 증설 및 시설개선후 왕송저수지 수질개선(COD) 추세

※ (사례2) 군포시 대야물맑음터 하수처리시설(재이용)을 반월저수지 호소 수질개선
※ (사례3) 용인시 기흥레스피아 총인 고도처리 시설설치 완료단계로 기흥저수지 수질개선 전망

- (사전예방 대책) 공공하수처리시설을 농업용 저수지 유역에 신규로 설치하는 경우 해당 시설 설치인가 전에 저수지 수질예측 모델링, 우회수로 (By-pass) 설치 등 저수지 수질예측 및 오염 방지 대책을 충분히 마련하여 수면관리자와 협의를 거친 후 인가 협조
중점관리저수지 수질개선 체계적 추진
- 관계기관 간 협업체계 구축하여 중점관리저수지별 수질개선대책 수립 및 추진
 - 시범시설 설치·운영 관련 관계기관 간 상시 협의 추진
- 중점관리저수지 지정 및 확대

화성호 및 새만금 수질개선 효율적 추진
- 화성호 수질보전보완대책 및 수질개선종합대책 추진과 수질관리여건변화에 따른 수질변화 정량적 평가·예측
- 관계기관 간 협의회 운영하여 중간평가 실시하고 보완·점검 실시

하구 및 하구호 수질 및 수생태계 통합관리체계 구축
- 관계 부처 협의 등 하구관리법(가칭) 제정 추진
- 하구관리법(가칭)을 근거로 하구 및 하구호 통합관리계획 수립
- 하구복원에 대한 공감대 형성을 위한 하구관리 이해관계자 협의체 구축·운영

하천·하구 부유쓰레기 정화사업 효율적 추진
- 하천·하구쓰레기 관리 기본체계 내실화
 - 관계부처 간, 중앙~지방간, 상·하류 지자체간 유기적 협력체제 건고화
- 하천·하구 쓰레기 수거·처리 범위의 법적 근거 명확화
 - 국가는 쓰레기 수거·처리 비용을 지원하는 근거 마련
- 수계별·지역별·성상별 하천·하구쓰레기 통계관리
 - 하천·하구쓰레기 정화사업 추진 실적을 토대로 수거량, 처리방법 등에 대한 통계분석 및 자료관리
하구 및 하구호 수질 및 수생태계 조사 평가 및 연구 확대

- 하구와 하구호의 물환경을 종합적으로 판단할 수 있도록 기초조사체계를 구축하고, 국가모니터링 체계에 편입하여 운영
- 하구 및 연안에 적용할 수 있는 맞춤형 총량관리 통합하구모델 개발 및 하구 및 연안까지 오염총량제 확대
- 부처별 산발적으로 진행되고 있는 연구를 통합 조정할 수 있는 통합 R&D 관리체계 구축
- 생태적으로 중요한 하구에 대해서 하구생태복원대책 수립

다. 향후 추진 일정

- 호소 환경 조사-평가체계 통합 및 이용 다원화 추진(‘16~’18)
- 유역기반의 농업용 호소 통합관리 기반 구축(‘17)
- 중점관리저수지 수질개선 체계적 추진(계속)
- 화성호(‘21) 및 새만금 수질개선(‘20) 효율적 추진
- 하천·하구쓰레기 정화사업에 대한 국고지원의 법적 근거 명확화(‘18~’19)
- 하천·하구쓰레기 관련 통계자료 작성(‘18~)
- 하구관리법(가칭) 제정 추진(‘19~’23)
 - 하구 및 하구호 통합관리계획 수립 및 이행(‘23~)
 - 오염총량관리제 연안까지 확대(‘23~)
 - 생태적으로 중요한 하구 대상 하구생태복원종합대책 수립(‘16~’20)
선진국에서는 국가차원의 하구복원체계를 구축하여 통합관리

선진국에서는 국가차원의 하구복원체계를 마련하여 수행 중으로, 하구환경관리를 위한 근거를 법에 규정하여 운영하는 "법정 관리체계(미국)"와 법적 구속력은 없지만 다양한 이해관계자 간의 이해와 업무협조 및 조정 등을 바탕으로 운영되는 "비법정 관리체계(영국 등 연방국가 및 유럽)"로 나눌 수 있음.

미국 환경보호청(EPA)은 1987년 청정수법(Clean Water Act) 320조에 따라 국가하구관리 프로그램(National Estuary Program, NEP)을 수립

- 국가적으로 중요한 하구의 수질과 생태적 건강성을 보호/복원하기 위한 것으로, 각 하구별로 익의 수질, 서식처 등의 문제를 해결하기 위한 구체적인 목표와 행동을 담은 종합보호관리계획(Comprehensive Conservation and Management Plan, CCMP)을 수립
- 특히, 시민, 주·지방정부, 연방기관, 비정부기구, 민간부문 등 다양한 이해관계로 구성된 관리위원회(Management Conference)를 구성하여, 종합보호관리계획을 이행하기 위한 공감대를 구축하고 협력적으로 의사결정이 이루어짐
- 현재 국가적으로 중요한 28개의 하구가 지정되어, 해당 하구 및 주변 유역에 대한 종합적 원 연구가 진행 중(150)

영국은 90년대 초반 37개 하구에 대한 하구관리프로그램을 구축하여 하구 모니터링, 조사, 숨지복원, 환경친화적 하구둑 설치·운영 등의 기술개발을 지원

- 영국은 하구관리와 관련된 이해당사자와의 자율적인 참여를 통해 하구를 관리하고 있는데, 대표적인 사례가 텅즈하구협의체(Thames Estuary Partnership, TEP)임
- 텅즈하구협의체는 비영리법인으로 하구의 주요 현안에 대해 이해당사자 간의 의사소통, 정보 교환, 연구재원 확보 등의 역할 수행(151)

선진국에서는 통합적 개념의 하구관리체계를 운영하고 있으며, 하구로 유입하는 육상기인 오염물질을 저감하기 위해 청오염원과 비청오염원관리를 포함하는 포괄적인 관리정책을 추진

151) 하구역종합관리시스템. 국외 하구관리 사례.
http://www.krestuary.or.kr/index.php?mid=info_example2&listStyle=list&order_type=asc&document_srl=335.[2015.6.26]
선진국의 하구환경관리 체계

<table>
<thead>
<tr>
<th>구분</th>
<th>영연방형 하구관리체계</th>
<th>미국형 하구관리체계</th>
</tr>
</thead>
<tbody>
<tr>
<td>법적 성격</td>
<td>비법정 관리체계</td>
<td>법정 관리체계</td>
</tr>
<tr>
<td>법적 구속력</td>
<td>없음</td>
<td>있음</td>
</tr>
<tr>
<td>주요 국가</td>
<td>영국 등 영연방 및 유럽국가</td>
<td>미국</td>
</tr>
<tr>
<td>집행 주체</td>
<td>운영위원회</td>
<td>환경보호청, 관리협의회</td>
</tr>
<tr>
<td>집행요소</td>
<td>이해당사자간 자율과 협조</td>
<td>규범적 구속력, 관 주도의 지원</td>
</tr>
<tr>
<td>근거 및 형태</td>
<td>자율관리프로그램</td>
<td>법적 규정에 의한 관리 프로그램</td>
</tr>
</tbody>
</table>

예)
- 태즈하구 프로그램(영국)
- 프레이져하구 프로그램(캐나다)
- 국가하구프로그램(미국)

자료: 이창희 등, 2007, 하구환경관리의 통합성 확보를 위한 관리체제 개선방안, 해양정책연구 제22권 2호

자료: 환경부, 2012, 수생태계 훼손하구 건강성 개선을 위한 시범복원 대상하구 선정 연구

| 국가하구복원목록 공간위치 작성 사례(미국) |

![National fingerprinting image](image-url)
중점관리저수지 지정관리 절차

- **적용범위**
 - 환경부(총괄), 지자체(호외 대책), 수면관리자(호내 대책), 환경공단(기술검토)
- **지정요건**
 - 총 저수용량이 1천만㎥ 이상, 오염 정도가 기준을 초과하는 경우(농업용저수지 4등급, 기타 3등급), 환경부장관이 해당 수계의 수질보전을 위해 필요하다고 인정하는 경우
 - 해제요건 : 중점관리저수지 지정 이후 수질오염도가 지정요건 이하로 2년 이상 계속 유지되는 경우
- **달성목표**
 - 관광레저형(생활용수 및 관광레저 기능, COD 4.0㎎/L 이하), 수변휴양형(수변휴양 기능, COD 5.0㎎/L 이하), 기존 목적 이용(농업용수 기능, COD 8.0㎎/L 이하)
- **절차**
 1. 지정계획 통보(환경부→시·도, 수면관리자)
 2. 수질개선계획서 제출(시·도, 수면관리자→환경부, 3개월 이내)
 3. 중점관리저수지 지정 통보(환경부→시·도, 수면관리자)
 4. 수질개선대책 등 제출(시·도, 수면관리자→환경부, 1년 이내)
 5. 수질개선대책 등 승인 통보(환경부→사도, 수면관리자, 3개월 이내)

주요 절차

- **개선계획** 저수지 수면관리자와 지자체가 공동 마련
- **예산편성 지원** 하수처리사업, 생태하천복원사업, 비점오염저감사업, 공단폐수처리사업, 가축분뇨 처리사업, 호외 오염물질 저감대책 등을 우선적으로 편성 및 지원(원칙적으로 5년)
 - 예산편성지원(국고)시 「보조금관리에 관한 법률 시행령」제4조제1항의 ‘보조금 지급 대상 사업의 범위와 기준 보조율’에 따른 사업별 국고보조율에 따름
- **사업관리 및 평가** 사업추진 상황, 수질 및 수생태계 변화 모니터링, 수질 개선정도, 주민만족도 등 자체 사업평가(지자체수면관리자, 지정연도~사업종료 후 3년)
화성호 수질보전보완대책('13)
○ 담수화 수질목표(농업용수기준 IV등급 : T-P(0.1 mg/L), T-N(1.0 mg/L), COD(8.0 mg/L))를 달성하기 위해 호내대책 및 상류유역대책 병행 추진
~ '21년까지 상류대책과 호내대책에 대하여 우선순위를 고려하여 단계별로 추진

<table>
<thead>
<tr>
<th>대책</th>
<th>추진기관</th>
<th>대책내용</th>
<th>사업비 (백만원)</th>
<th>추진기간</th>
</tr>
</thead>
<tbody>
<tr>
<td>호내 대책</td>
<td>한국농어촌공사</td>
<td>① 남양인공습지 및 수초저류지 증설
- 남양인공습지 : 30ha
- 수초저류지 23.6ha 추가 증설
<기존 61.3ha → 추가 84.9ha></td>
<td>5,619</td>
<td>'13~'15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>② 자안침강지, 인공습지 신설
- 자안인공습지 : 40ha
- 자안침강지 : 10ha</td>
<td>15,429</td>
<td>"</td>
</tr>
<tr>
<td>상류 대책</td>
<td>화성시</td>
<td>② 남양하수처리장 환원처리시설 확충
- 용량 : 26,000톤/일</td>
<td>2,600</td>
<td>'13~'15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>④ 어은천 유역 가축분뇨처단자원화시설
- 용량 : 100톤/일</td>
<td>14,598</td>
<td>'17~'21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>⑤ 자안천 유역 비정오염저감시설
- 1개소 : 10,000톤/일</td>
<td>2,230</td>
<td>"</td>
</tr>
</tbody>
</table>

* ① ~ ⑤는 수질개선 효과로 본 사업 우선순위임.
새만금 유역 수질관리를 위한 제2단계 수질개선 종합대책(‘11∼‘20)

- 목표수질
 - 항목별 수치기준과 더불어 심미적 기준 추가

<table>
<thead>
<tr>
<th>구분</th>
<th>목표수질</th>
<th>도시용지 구간(하류)</th>
</tr>
</thead>
<tbody>
<tr>
<td>생활환경기준</td>
<td>IV 등급</td>
<td>- COD: 8.0㎎/L 이하</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- T-P: 0.10㎎/L 이하</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Chl-a: 35.0㎎/m³ 이하 등</td>
</tr>
<tr>
<td>인체건강보호기준</td>
<td>III 등급</td>
<td>- COD: 5.0㎎/L 이하</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- T-P: 0.05㎎/L 이하</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Chl-a: 20.0㎎/m³ 이하 등</td>
</tr>
</tbody>
</table>

1) 수치적 기준의 세부 항목은 환경정책기본법 제10조의 「호소 수질환경기준」과 같음

- 주요 대책

<table>
<thead>
<tr>
<th>권역</th>
<th>구분</th>
<th>주요 과제(과제수)</th>
<th>사업비 (억원)</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td></td>
<td>45개</td>
<td>29,502</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(소계(24개))</td>
<td>25,866</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(상류)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>접오염원(5개)</td>
<td>11,825</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 충남마을하수도공공하수처리시설, 하수관거 확충</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>비접오염원(7개)</td>
<td>8,326</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- CSOs, 생태하천, 강변레저지, 농업비접오염원관리등</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>축산분뇨(6개)</td>
<td>2,130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 옥주대책, 공공처리장 증설, 축산물 현대화, 개별시설지원등</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>유지용수확보(5개)</td>
<td>3,685</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 어우보 운영개선, 저수지 증고등</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>기타(1개)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 흙관충량제</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(해양)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>소계(19개)</td>
<td>3,634</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(호염)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>유입수(4개)</td>
<td>3,320</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 침전지, 인처리시설, 금강호 화석수 도입등</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>호소(3개)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 적외선저자극, 준염류기등</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>내부개발(11개)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- LID, 하폐수처리대책등</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>연구사업(1개)</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 새만금유역환경모니터링 및 수질개선연구사업(새만금호 및 상류유역)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(해양)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>소계(2개)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(모니터링)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 해양수질 및 해양변화 모니터링</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>해양대책(1개)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 해양환경보전대책 R&D</td>
<td>2</td>
</tr>
</tbody>
</table>
공공하수처리시설 방류수수질기준

<table>
<thead>
<tr>
<th>구분</th>
<th>생물화학적 산소요구량 (BOD) (㎎/L)</th>
<th>화학적 산소요구량 (COD) (㎎/L)</th>
<th>부유물질 (SS) (㎎/L)</th>
<th>총질소 (T-N) (㎎/L)</th>
<th>총인 (T-P) (㎎/L)</th>
<th>총대장균 군수 (개/㎖)</th>
<th>생태독성 (TU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1일 하수처리용량 500㎥ 이상</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 지역</td>
<td>5 이하</td>
<td>20 이하</td>
<td>10 이하</td>
<td>20 이하</td>
<td>0.2 이하</td>
<td>1,000 이하</td>
<td>1 이하</td>
</tr>
<tr>
<td>II 지역</td>
<td>5 이하</td>
<td>20 이하</td>
<td>10 이하</td>
<td>20 이하</td>
<td>0.3 이하</td>
<td>3,000 이하</td>
<td></td>
</tr>
<tr>
<td>III 지역</td>
<td>10 이하</td>
<td>40 이하</td>
<td>10 이하</td>
<td>20 이하</td>
<td>0.5 이하</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV 지역</td>
<td>10 이하</td>
<td>40 이하</td>
<td>10 이하</td>
<td>20 이하</td>
<td>2 이하</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>구분</th>
<th>범위</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 지역</td>
<td>가. 수도법 제7조에 따라 지정ㆍ공고된 상수원보호구역이나, 환경정책기본법 제22조제1항에 따라 지정ㆍ고시된 특별대책지역 중 수질보전 특별대책지역으로 지정ㆍ고시된 지역다. '환경수계 상수원 수질개선 및 주민지원 등에 관한 법률' 제4조제1항, '낙동강수계 물관리 및 주민지원 등에 관한 법률' 제4조제1항, '금강수계 물관리 및 주민지원 등에 관한 법률' 제4조제1항 및 '영산강·섬진강수계 물관리 및 주민지원 등에 관한 법률' 제4조제1항에 따라 각각 지정ㆍ고시된 수변구역. '새만금사업 촉진을 위한 특별법' 제2조제1호에 따른 새만금사업지역으로 유입되는 하천이 있는 지역으로서 환경부장관이 정하여 고시하는 지역</td>
</tr>
<tr>
<td>II 지역</td>
<td>'수질 및 수생태계 보전에 관한 법률' 제24조제2항에 따라 고시된 중권역 중 화학적 산소요구량(COD) 또는 총인(T-P)의 수치가 같은 법 제24조제2항제1호에 따른 목표기준을 초과하였거나 초과할 우려가 현저한 지역으로서 환경부장관이 정하여 고시하는 지역</td>
</tr>
<tr>
<td>III 지역</td>
<td>'수질 및 수생태계 보전에 관한 법률' 제22조제2항에 따라 고시된 중권역 중 한강・금강・낙동강・영산강・성진강 수계에 포함되는 지역으로서 환경부장관이 정하여 고시하는 지역(I 지역 및 II 지역을 제외한다)</td>
</tr>
<tr>
<td>IV 지역</td>
<td>I 지역, II 지역 및 III 지역을 제외한 지역</td>
</tr>
</tbody>
</table>
3. 수생태계 건강성 제고로 생태계서비스 증진

<table>
<thead>
<tr>
<th>종전 대책</th>
<th>2025 계획</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 수질개선 중심의 물환경관리 목표 설정</td>
<td>• 수생태계 등급 설정 및 양호(good) 수준 이상 달성</td>
</tr>
<tr>
<td>• 수생태계 건강성 조사·평가 기반 구축</td>
<td>• 수생태계 건강성 조사평가 확대 및 훈련원규명 제계화</td>
</tr>
<tr>
<td>• 생태복원 지역의 양적 확대</td>
<td>• 강증류까지 회유성어종이 돌아오는 수생태계 연속성 확보</td>
</tr>
<tr>
<td>• 수생태계 보전 및 복원 위주의 정책 추진</td>
<td>• 수생태계 서비스의 경제적 가치 평가 및 정책활용</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-1. 수생태계 건강성 평가체계 확립 및 양호(B) 등급 목표달성

가. 현황 및 문제점

각 생물군(부착돌말류, 저서성대형무척추동물, 어류)의 평가결과는 수생태 건강성 종합평가 결과보다 건강성이 낮은 것으로 평가
- 부착돌말의 경우 한강, 낙동강, 섬진강은 양호하나, 금강과 영산강은 보통이며, 제주 수계는 불량으로 부착 돌말지수로 본 수생태 건강성 나쁜편
- 이에 비해 저서대형무척추동물은 모든 대권역 수계에서 양호등급 이상이며, 어류의 경우는 한강, 섬진강, 제주는 양호이나 그 외는 보통으로 평가
<table>
<thead>
<tr>
<th>항목</th>
<th>등급</th>
<th>등급별 구간수 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>한강 (360구간)</td>
</tr>
<tr>
<td>부착돌말지수 (TDI) -16p</td>
<td>최상</td>
<td>27.5</td>
</tr>
<tr>
<td></td>
<td>양호</td>
<td>28.3</td>
</tr>
<tr>
<td></td>
<td>보통</td>
<td>21.7</td>
</tr>
<tr>
<td></td>
<td>불량</td>
<td>22.5</td>
</tr>
<tr>
<td>저서동물지수 (BMI) -25p</td>
<td>최상</td>
<td>52.5</td>
</tr>
<tr>
<td></td>
<td>양호</td>
<td>21.7</td>
</tr>
<tr>
<td></td>
<td>보통</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>불량</td>
<td>14.2</td>
</tr>
<tr>
<td>어류생물지수 (FAI) -36p</td>
<td>최상</td>
<td>28.9</td>
</tr>
<tr>
<td></td>
<td>양호</td>
<td>40.8</td>
</tr>
<tr>
<td></td>
<td>보통</td>
<td>23.1</td>
</tr>
<tr>
<td></td>
<td>불량</td>
<td>7.2</td>
</tr>
</tbody>
</table>

수생태계 건강성 조사·평가 결과의 정책적 활용성은 여전히 낮은 상황
- 수생태계 건강성 목표기준이 설정되어 있으나, 달성여부 평가 부재
 - 생물학적 특성 이해표의 ‘생물등급(생물이해등급)’을 수질 목표와 병기하여, 2015년까지 달성하도록 고시152)되며 있으나 그간 목표기준 달성여부 평가대상에서 제외되어 실질적인 정책목표로서의 의미 상실
 - 게다가, 등급별 생물지표종이 동시에 출현하는 지점이 113개 중권역 중 70%에 해당153)하여, 현행 생물학적 특성 이해표에 따른 평가 곤란(※ 참고자료 3-1-2: 생물학적 특성 이해표)

152) 환경부 고시 제2006-227
153) '13년 낭한강 상류 저서생물은 4개 등급이 해당하는 종이 함께 출현, 어류는 3개 등급에 해당하는 지표종이 함께 출현하여 평가 곤란
나. 주요대책

- 수생태계 건강성 평가·환류체계 확립
- 전국 본류 및 지천의 수생태계 건강성 양호(B) 등급 달성

[표]
수생태계 건강성 평가·환류체계 확립

전국의 본류 및 지천의 수생태계 건강성 양호(B) 이상 등급 달성을 목표 기준 설정
- ’25년까지 전국 수생태계 건강성평가의 최상(A) 등급구간 30% 달성(’14년 15.4%), 양호등급구간 70%(’14년 51.6%), 보통(’14년 29.8%) 및 불량(’14년 3.2%) 구간이 존재하지 않도록 수생태 건강성 목표설정
- ’25년까지 전국 모든 하천에서 각 생물군(부착돌말류, 저서성대형무척추 동물, 어류)별로 양호(B) 이상 등급을 목표기준으로 설정
 - 부착돌말류 보통(C)이하 구간 52.2%, 어류의 보통이하 구간 42.2%, 저서 성대형무척추동물의 보통이하 구간 27.3%의 수생태 건강성 개선 필요

수생태계 건강성 목표기준 달성여부 평가 의무화
- 수질기준과 더불어 수생태계 기준 달성여부도 의무적으로 평가
 - 대권역·중권역·소권역 물환경관리계획 수립 시 수생태계 건강성 목표기준 유지·달성방안을 반영
- 수생태계 건강성 조사 및 평가 규정 신설
 - 수생태계 건강성 평가 대상, 자료, 평가방법 등을 환경부 고시로 규정

154) 이화학적 수질의 경우 <수질 및 수생태계 목표기준 평가 규정>에 따라 수질 측정자료의 분석평가를 수행
다. 향후 추진 일정

- 수생태계 건강성 평가·환류체계 확립(∼’20)
- 전국 본류 및 지천의 수생태계 건강성 양호(B) 등급 달성(∼’25)
참고자료 3-1-1

수생태 건강성 조사 지점 및 평가결과(‘07∼‘15)

○ 부착돌말지수

(‘Figure 2.2.2) 조사 시기별 부착돌말지수(TDI) 등급 분포

○ 저서동물지수

(‘Figure 2.2.3) 조사 시기별 저서동물지수(BMI) 등급 분포
○ 어류생물지수

(Figure 2.2.4) 조사 시기별 어류생물지수(FAI) 등급 분포

참고자료 3-1-2
◈ 생물학적 특성 이해표

<table>
<thead>
<tr>
<th>생물등급</th>
<th>생물지표종</th>
<th>서식지 및 생물 특성</th>
</tr>
</thead>
<tbody>
<tr>
<td>매우좋음 ~ 좋은</td>
<td>염시우, 가재, 콤하루살이, 민하루살이, 금어, 물날도래, 깊은물갈대, 증기구, 씨앗구, 팔lobal</td>
<td>물이 맑아야 함, 수족은 짭짤한 편임</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>좋음 ~ 보통</td>
<td>다슬기, 걸적기어리, 민하루살이, 민물갈대, 적혈구, 콤하루살이, 물날도래, 백합구, 황수구</td>
<td>물이 맑아야 함, 수족은 짭짤한 편임</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>보통 ~ 약간나쁨</td>
<td>물달팽이, 두부부리, 물벌레, 백합구, 증기구, 생물구, 반달구, 반달구</td>
<td>물이 약간 혼탁하며, 수족은 약간 무리한 편임</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>약간나쁨 ~ 매우나쁨</td>
<td>물달팽이, 두부부리, 물벌레, 백합구, 증기구, 생물구, 반달구, 반달구</td>
<td>물이 매우 혼탁하며, 수족은 무리한 편임</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>하천명</td>
<td>항목</td>
<td>동물상 변화</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사업 전</td>
</tr>
<tr>
<td>승기천</td>
<td>어류</td>
<td>2종</td>
</tr>
<tr>
<td></td>
<td>저서성대형무척추동물</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>부착조류</td>
<td>-</td>
</tr>
<tr>
<td>학의천</td>
<td>어류</td>
<td>2종</td>
</tr>
<tr>
<td></td>
<td>저서성대형무척추동물</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>부착조류</td>
<td>-</td>
</tr>
<tr>
<td>무심천</td>
<td>어류</td>
<td>13종</td>
</tr>
<tr>
<td></td>
<td>저서성대형무척추동물</td>
<td>17종</td>
</tr>
<tr>
<td></td>
<td>부착조류</td>
<td>-</td>
</tr>
<tr>
<td>판교천</td>
<td>어류</td>
<td>2종</td>
</tr>
<tr>
<td></td>
<td>저서성대형무척추동물</td>
<td>23종</td>
</tr>
<tr>
<td></td>
<td>부착조류</td>
<td>-</td>
</tr>
<tr>
<td>갑천</td>
<td>어류</td>
<td>20종</td>
</tr>
<tr>
<td></td>
<td>저서성대형무척추동물</td>
<td>48종</td>
</tr>
<tr>
<td></td>
<td>부착조류</td>
<td>-</td>
</tr>
<tr>
<td>전주천</td>
<td>어류</td>
<td>19종</td>
</tr>
<tr>
<td></td>
<td>저서성대형무척추동물</td>
<td>16종</td>
</tr>
<tr>
<td></td>
<td>부착조류</td>
<td>-</td>
</tr>
<tr>
<td>선은천</td>
<td>어류</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>저서성대형무척추동물</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>부착조류</td>
<td>-</td>
</tr>
<tr>
<td>동정천</td>
<td>어류</td>
<td>4종</td>
</tr>
<tr>
<td></td>
<td>저서성대형무척추동물</td>
<td>14종</td>
</tr>
<tr>
<td></td>
<td>부착조류</td>
<td>-</td>
</tr>
<tr>
<td>대가천</td>
<td>어류</td>
<td>20종</td>
</tr>
<tr>
<td></td>
<td>저서성대형무척추동물</td>
<td>47종</td>
</tr>
<tr>
<td></td>
<td>부착조류</td>
<td>-</td>
</tr>
<tr>
<td>대천천</td>
<td>어류</td>
<td>18종</td>
</tr>
<tr>
<td></td>
<td>저서성대형무척추동물</td>
<td>28종</td>
</tr>
<tr>
<td></td>
<td>부착조류</td>
<td>-</td>
</tr>
</tbody>
</table>

155) 환경부·한국환경공단, 2014, 생태하천 복원사업 사업효과 분석 연구.
EU는 수체의 상태 평가 시 생물(생태계)을 최우선으로 고려

- ‘좋은 상태’란 이화학적인 수질뿐 아니라 생태적으로 좋은 물을 의미. 생태적인 상태(ecological status)는 수체의 동식물성 풍부도 등 생물 군집을 평가하여 결정하며, 이 외에도 영양요소, 생식, 수온 등 수질 요소와 수량, 수심, 하수구조 등 수문지형학적 요소가 평가과정에서 고려. 그러나 이들은 보조적 역할.

\[\text{Ecological Status} + \text{Chemical Status}\]

(WFD의 지표수 평가 개념도)

- 이화학적인 상태(chemical status)는 물, 퇴적물 또는 생물상에서 33개의 신규 우선관리대상 오염물질 및 8개의 기존 규제대상 오염 물질의 환경기준을 충족하는지 여부에 따라 결정\(^{157}\)
- 생태적으로 좋은 상태(good ecological status)란 수체의 생물학적인 요소와 이를 뒷받침하는 요소가 교란되지 않는 상태와 비교할 때 약간(slightly) 벗어난 상태를 의미

\(^{156}\) WFD의 종합적인 생물평가는 생물평가에 기초. 최중 생태학적 상태의 평가는 생물만을 이용하며, 그 외 서식처, 지형, 유량, 이화학적 요소들은 보조적으로 만 이용(다만 생태학적 상태가 Good이라고 해도 화학적 상태가 Good를 만족하지 못하면 한 단계 하향 조정).

166

제2차 물환경관리기본계획부록

제2부 5대핵심전략별주요과제

참고자료 3-1-5

- 미국은 수질기준 미달성 구간에 대한 목록 작성 및 총량관리계획 수립을 의무화
 ○ 주정부는 미국 청정수법(Clean Water Act)에 규정한 용도에 부합하지 않는 하천호소 구간의 목록 (“303(d) List”)을 작성하여 환경보호청(EPA)에 제출
 - 지정된 물 이용에는 상수원수, 농업공업용수뿐 아니라 생물의 서식처도 포함
 ○ 주정부는 해당 목록에 등재된 하천호소 구간을 대상으로 기준의 오염원 관리정책으로는 수질기준 달성이 어려운 구간을 파악하고, 오염의 정도나 물이용 저해의 심각성 등의 기준에 따라 원인물질에 대한 총량관리계획(total daily maximum loads, TMDL)을 수립하는 우선순위 설정
 - 주정부는 “303(d) List”를 수립한 후 8∼13년 이내에 총량관리를 완료하기 위한 장기계획을 수립하여 EPA에 제출해야 함
 ○ “303(d) List”에 등재된 수체 구간 중 총량관리계획의 수립이 완료되었거나 개선된 구간은 “303(d) List”에서 삭제

- (오레곤 주) John Day 유역에 대한 수생태계 건강성 조사를 통해 5개 구간(segment)이 생물학적 수질기준을 달성하지 못하여 303(d) 목록에 등재됨
 - 여름철 최대 수온, 총부유물질(TSS)/탁도, 수변 가림막(canopy) 부족, 영양염류, 염소, 빠른 물살 서식지 부족 등이 생태계 환경전환으로 조사됨
 ○ 해당 구간에서 수온에 대한 총량관리 계획 및 유역관리의 관리방안 도출
 - 점오염원 허가제도(NPDES)를 통해 점오염원의 방류수/배출수 수온 관리
 - 수변의 자연식생의 확대 및 하도 내 나무 부스러기(woody debris) 증가
 - 하도 및 상수지역 침식의 최소화
 - 하천 만곡, 하도 복잡성, 홍수수량 규모, 지하수 상호작용의 증가 등
3-2. 건강성 훼손 하천 원인 규명 및 복원 체계 확립

가. 현황 및 문제점

화경부는 ’87년부터 생태하천 복원사업을 추진 중이며, 2010년 생태하천 복원사업 중장기 추진계획(‘11∼’15년)을 수립하는 데 훼손된 하천을 복원에 적극적인 노력을 기울임
- ’87년부터 ’15년까지 2조 158억원의 예산이 1,813개 사업(사업연장 1,250km)에 투자, 안양천, 전주천, 무심천 등 많은 하천에서 수질이 개선 및 서식여종이 증가

하지만, 그간 수생태계 건강성 조사·평가에 따라 훼손 원인을 조사하는 절차나 복원 매뉴얼은 미비
- 수질측정망의 경우, 측정자료가 정기적으로 대외에 공개되며 특이 측정값 발생 시 관련 기관에 통보되어 배출업소 지도·단속 등에 활용
- 수생태계 평가에 대한 기준은 ‘생물학적 특성 이해표’로서 참고표 수준에 머물러 있어 실질적인 정책목표로서의 절차나 후속대응 체계 미비
- 특정 하천의 교란-훼손 정도를 진단하거나 하천 복원의 기본 방향 제시를 위해 필요한 참조하천(reference stream)158)에 대한 정보 부족

158) 참조하천 : 인위적인 교란이 없거나 교란이 최소인 하천
나. 주요대책

- 조사·평가지점 확대 및 평가결과 관리
- 훼손 원인 규명체계 마련
- 훼손 하천 복원 의무화 및 지류총량제 연계
- 참조한전 지정 및 활용

☐ 조사·평가지점 확대 및 평가결과 관리

- 수생태계 모니터링을 위한 국가 조사·평가망 구축
 - 수생태계 건강성 조사·평가망(가칭) 도입
 - 조사·평가망 구성·운영, 평가자료 관리 등이 담긴 생물 측정망 운영계획 수립
 - 수생태계 건강성 조사·평가지점을 약 3,000개 지점으로 대폭 확대하고 조사주기를 조정(3년)
 - 하천과 호소의 구분, 하천 본류와 지류의 구분 등 수체별 특성을 고려한 조사방법·평가기법으로의 보완·개선

- 수생태계 건강성 평가결과 관리
 - 전국 수생태계 건강성 조사·평가 자료의 통합관리체계 구축
 - 입력자료 표준화, 자료 유효성 검증, 특이측정값 확인, 통계처리 등
 - 참조하천 분석, 특정 수계 비교 분석, 수생태계 건강성 경년변화 분석, 특정 우점종 분포 변화 분석 등 다방면으로 활용 가능159)

☐ 훼손원인 규명 체계 마련

- 수생태계 건강성 조사·평가 후속조치 제도화
 - 건강성 조사·평가 결과 등급이 낮은 구간에 대하여 주요 훼손요인을 도출하기 위한 「수생태계 훼손원인 진단·분석 체계」 마련

159) 국립환경과학원. 2013, 수생태계 건강성 통합정보 분석기법에 관한 연구(Ⅰ).
제2차 물환경관리계획에 관한 주요 과제

- (1단계) 훼손요인 유형화(목록화) : 기존 조사 결과 등을 분석하여 훼손요인으로 간주되는 전체 요인 및 훼손 특성을 목록화
- (2단계) 해당 하천에 대한 훼손요인 후보 대상 선정
- (3단계) 훼손요인 후보대상에 대한 조사·평가(매년) 및 타사례 분석
- (4단계) 최종 훼손 요인 선정 및 개선을 위한 정책 수립

그림 3-2-1
수생태계 훼손원인 진단·분석 체계(안)
수생태계 건강성 악화 지점(또는 수생태계 환경기준 미달성 지점)에 대한 원인 규명 후 이의 개선을 위한 복원 등 관리 정책 추진

- (훼손원인파악)
 수질오염, 생태유량 부족, 수온변화, 하천의 종·횡적 연결성 파괴 등

- (요일별 대응관리)
 각 훼손원인의 상대적 중요도를 파악하여 적절 대응 전략 수립 및 이행

수질오염: 수질오염총량관리제도(지류총량제), 비점오염원 관리정책, 방류수 수질규제 등

생태유량부족: 불투수면 관리, 환경생태유량 확보 대책 적용 등

수온관리: 수체로 방류수 수온 규제 등
● 연결성훼손: 하천구조물 개선, 수변생태복원, 홍수터 복원 등

■ 훼손하천 복원 의무화 및 지류총량제 연계

- 하천 구간을 대상으로 생태하천복원사업 의무화(※ 참고자료 3-1-3: 생태하천복원
 사업 효과 분석)
 - 심각한 훼손하천 대상으로 지자체가 “생태하천 복원계획” 수립 및 이행
 하지 않는 경우 환경부가 생태하천 복원 강제 할 수 있도록 관련 규정 개정
 - 현재 지자체는 시·도 및 유역(지방)환경청의 심의를 거쳐 수립한 “생태
 하천 복원계획”을 토대로 생태하천복원사업을 실천
 - 특히 4대강 본류의 수생태계 훼손이 된 경우 환경부 직접사업으로 생태
 하천 복원 수행

- 수생태계 건강성 악화·미개선 구간 대상 지류총량제 시행
 - 수생태계 건강성 악화·미개선 구간 복원 우선순위 결정(’18~계속)
 - 물이용 특성, 서식종 중요도, 복원/개선 가능성 등을 토대로 복원 우선순위
 결정
 - 지류총량제 방식으로 복원 우선순위 구간 대상 원인물질 총량관리 계획
 수립(’19~계속)
 - 수생태계 건강성 악화·훼손 원인물질·인자에 대한 총량관리계획 수립
 - 현행 총량관리항목인 BOD, T-P 외에 하수원류수, 토사, 수온, 불투수면
 비율 등 수생태계 건강성 악화·훼손 원인/대리지표 파악
 - 수생태계 건강성 악화 원인/대리지표에 대한 총량관리계획 수립
 - 4대강 전수계를 대상으로 시행 중인 기존 총량제와 달리 복원 우선순위
 구간을 대상으로 ‘지류총량제’ 형태로 원인물질을 관리
 - 개별 하천에서 문제가 되는 특정 오염물질(T-N, TOC, COD 등)의 집중
 관리를 위해 ’15년 2~3개 지역에서 지류총량제 시범사업 추진 중160)

160) 환경부 보도자료, 2015.2.23, 수질오염총량관리제도, 2단계 마무리 첫고 3단계 논의.
- 수생태계 악화·훼손 원인물질 총량관리방안 이행(’19∼계속)
 - 부하량 할당 및 관리(점 및 비점오염원 대상)
 - 중권역/소권역 물환경관리계획 수정
 - 할당부하량 준수여부 모니터링
 - 수생태계 건강성 조사 및 개선/복원 성과 평가

하천 관리방향 정립을 위한 참조하천(reference stream) 선정 및 활용

- 참조하천 선정기준(안) 및 중기 운영계획(안) 마련
 - 해외에서 적용되고 있는 기준 및 국내 하천의 여건 등을 고려하여 검토 항목, 선정기준 및 방법 설정
 - 현장조사 등을 통해 참조하천 대상 후보지역 선정 후, 정밀조사를 통해 참조하천을 최종 선정하고 목록화
 - 참조하천 운영계획을 마련하여 지속적인 조사·평가 자료의 축적 훼손원인 및 훼손정도 파악, 하천 복원 목표 설정 등에 활용

- 필요 시 참조하천 보존 등을 위한 하천보호구역(Stream Reserve)으로 지정·관리(※ 참고자료 3-2-1: 참조하천의 개념 및 기능)

수생태계 전문조사 연구조직 신설

- 수생태계 건강성 조사·평가망 확대를 통한 과학적 훼손원인규명 체계 확립하고 수생태계 전문 조사·연구 조직을 신설하여 수생태계 건강평가 조사 및 연구 전담
 - 국립환경과학원 내에 수생태계 전문조사 연구조직 신설을 통한 수생태계의 건강성에 대한 통합적 조사와 연구 전담 및 국립생물자원관, 국립생태원 등의 연구 지원 확대
 - 신규 전문인력 양성을 통한 수생태 분야 정책수립의 과학적 기반 강화
 - 수생태계 건강성 확보를 위한 신뢰할 수 있는 기초자료의 지속적인 촉척 및 이를 통한 다양한 정책 추진
다. 향후 추진 일정

- 조사·평가지점 확대 및 평가결과 관리(’25)
- 훼손 원인 규명체계 마련(’17)
- 훼손 하천 복원 의무화 및 지류총량제 연계(‘18~’25)
- 참조하천 지정 및 활용(’20)
- 수생태계 전문조사 연구조직 신설(’20)

참조자료 3-2-1

참조하천의 개념 및 기능

○ 개념
- 자연상태가 양호하고 인위적인 교란이 없거나 교란이 최소인 하천으로 물리·화학·생물학적 건강성을 유지하고 있는 하천

○ 기능
- 교란의 영향 정도 측정 → 훼손된 하천의 복원 방향과 목표를 제공, 수생태계 보호 및 보전지역 이용
 • 최상의 하천 상태에서 나타날 수 있는 수질, 물리적 서식처 및 지표생물 특성을 도출하여 교란의 영향 정도를 측정할 수 있는 기준 마련
 • 생물학적 군집의 임재력(깃대종/복원종 등 생물복원에 대한 정보) 설명

○ 해외사례
- 미국은 전체 조사지점의 8~10%정도를 참조하천으로 선정할 것을 권고하고 있으며, Arizona, Oregon, Iowa 등 일부 주 정부는 수생태계 평가 기준 설정 및 교란원인 파악에 참조하천을 활용 중
3-3. 수생태계의 종·횡적 연결성 제고

가. 현황 및 문제점

※ 이·치수 중심의 하천관리로 하천 생태계의 종적·횡적 연결성 훼손
- 취수 목적의 보 건설 및 관리 부실 등으로 인해 상·하류 간 종적 연결성 훼손
 • '14년 기준 전국 3,582개 하천의 34,012개의 보 중 어도는 5,081개로, 어도설치율은 14.9%에 불과161
 • 전국 하구 463개 중 226개(49%)에 하구둑이 건설되어 기수역의 생태적 연결성이 단절된 상황
- 홍수요통을 위한 하천 직강화와 범람 방지를 위한 제방 건설로 하천 내외의 횡적 연결성 훼손
 • 수리적 안전성을 높이기 위해 콘크리트 블록, 대규모 조경석 등 건고한 재료로 호안을 조성

※ 4대강 보 건설 등으로 인한 하천 유속 감소, 우점종 변화 등 변화된 물환경 여건에 맞춘 관리대책 필요
- 4대강 사업으로 강생태계는 호소생태계로 변화되어 수중생물(플랑크톤, 어류, 저서생물)의 경우 유수 선호종이 정수 선호종으로 대체됨162
- 수변육상생물(조류, 포유류, 양서파충류)의 경우 서식처 감소로 인한 생물 다양성 저하167

※ 은어·뱀장어 등 경제성이 있는 회유성 어종의 이동지역에 어도가 많이 설치되나, 어류의 특성을 반영하지 않은 어도 설계 등 문제점이 지속적으로 지적됨163

- 어도내부 퇴적 및 파손, 부적절한 어도 정사도(급경사), 어류특성을 고려하지 못한 무분별한 어도 설치 등
- 한편, 매년 50~150개 정도의 보가 기능을 상실했고 폐기되지만, 철거되지 않고 하천에 그대로 존치
 - 하천에 존치된 보 때문에 해당 구간의 생태통로가 단절되고, 흐름이 정체되어 수질이 악화되는 등의 문제가 발생

![그래프: 수계별 보 설치 개수 및 상태(2010년)](http://www.fishway.go.kr)

- 상수원 수질개선을 위해 수변 토지를 매수하여 생태벨트로 조성 중이나, 산발적인 사업 진행으로 수질·수생태계 개선에 한계가 존재
 - ’12년 기준, 총 매수토지 중 임야를 제외한 면적의 21%(한강), 33%(낙동강), 21%(금강), 30%(영산강·섬진강)을 각각 수변생태벨트로 조성
 - 토지매수 대상지역이 광범위하고 협의매수 방식으로 사업이 추진되어 수변 생태벨트 간 연속성이 결여됨
 - 하천부지 등 국유지에 의해 수변생태벨트 연속성이 단절되기도 함

164) 각 수계관리위원회 <수변구역 관리 기본계획>참조.
나. 주요대책

- 하천구조물 및 어도개선을 통한 종적 연결성 제고
- 수변생태벨트의 연속성·기능성 개선을 통한 횡적 연결성 제고

[목록]
- 하천구조물 및 어도개선을 통한 종적 연결성 제고
 - (기본방향) 수생태계의 건강성은 각 구간 단위의 건강성뿐만 아니라 연속적으로 연결되어 회유성 어종이 강의 하류에서 상류까지 이동할 수 있어야 함
 - (구조물개선) 부처별 협력을 통해 농업용 보 설치·운영현황 및 기능상실 구조물 조사 및 보 철거 시범사업 추진
 - 농림축산식품부, 해양수산부 등 관련부처와의 협업을 통해 보 설치·운영현황 및 철거 필요성 등에 대한 기초조사 실시
 - 농림수산식품부(現 해양수산부)「내수면어업 발전 기본계획」에 농업용 보 및 어도관리계획이 포함
 - 보 설치·운영현황 조사결과 기능을 상실한 것으로 판단된 농업용 보의 철거사업 추진
 - (어도개선) 회유성 어종이 이동하는 지역에 어도설계 가이드라인 마련
 - 특히, 음어·벵장어 등 경제성 있는 회유성 어종이 이동하는 지역에 어도가 많이 설치되고 있으므로 해양수산부, 국토교통부 등과 협력하여 수생태계의 연결성 확보, 어류의 특성, 하천 유자·관리측면이 종합적으로 반영된 어도 설계 가이드라인을 마련
 - 회유성 어종 이동경로 조사 및 경로 내 어도 성능개선 시범사업 추진
 - 연어·황어·벵장어 등 하천 고유의 회유성 어류가 돌아오는 하천복원사업 추진
 - 회유성 어종의 이동 방해요소 확인·제거·어도 개선, 서식처 개선 등(165)
수변생태벨트의 연속성·기능성 개선을 통한 횡적 연결성 제고

- 실질적 언급 있으며 수변생태벨트가 조성되도록 전략적으로 토지 매수, 보전지역권(easement) 설정 및 생태벨트 조성사업을 추진
 - '14년 수계법 개정으로 토지의 감정평가액 외에 토지 및 영업 손실을 고려한 보상이 가능하게 되었으므로, 적정 매수가격 산정기준을 마련하여 토지매수 시 활용 가능
 - 하천점용허가기관과 협의를 통해 수변생태벨트 조성구간 주변 하천부지를 생태벨트로 조성

- 옛 물길터(홍수터) 복원 시범사업 추진
 - 이·치수 목적으로 직강화된 하천 중 생태적으로 복원이 필요한 하천을 대상으로 옛 물길터(홍수터) 복원 추진하여 본류와 지류·지천간의 생태적 연계를 강화

- 수변생태벨트 관리역량 강화
 - 수변생태벨트 조성·관리 대행기관의 전문성 및 관리역량 향상
 - 수변생태벨트와 지역 문화·관광의 연계방안 마련 등 지역주민의 만족도 제고방안 강구

다. 향후 추진 일정

- 생태이동통로 확보를 위한 하천구조물 개선사업 추진
 - 농업용보 설치·운영현황 및 기능상실 구조물 조사('20)
 - 기능상실 농업용보 철거 시범사업 추진('18~'25)

- 화유성 어류 복원 시범사업 추진(계속)

166) 상수원지역이나 환경적으로 보전가치가 높은 지역의 경우 토지소유가 이들 지역의 목적에 적합하게 토지를 영구적으로 관리하는 조건으로 이에 대한 보상비용 보상받는 제도
수변생태벨트의 연속성·기능성 개선
- 수변생태벨트 조성구간의 연속성 제고(계속)
- 홍수터복원 시범사업 추진(계속)
- 수변생태벨트 관리역량 강화(’18)

국외 사례 3-3-1

- 미국·일본·유럽 등에서는 하천 및 수변의 생태적 연속성을 개선하여 수질·수생태계를 보호
 ○ 미국의 경우, 어류 이동을 방해하는 지하배수로, 둥, 배수로, 댐, 보 등 인공장애물을 제거 또는 우회시키기 위한 국가 어도 프로그램(National Fish Passage Program)을 운영 중
 - 하천의 인공장애물 정보 등을 담은 인터넷 기반의 어도결정시스템을 구축하여 활용
 - 전력·가스산업을 감시·규제하는 독립기구인 연방에너지규제위원회(FERC)는 발전용 댐이나 보의 설치 시 어도 등 생태복원 시설의 설치를 허가조건으로 요구(167)
 ○ 미국 농무부 자연자원보전국은 ‘Conservation Reserve Enhancement Program’을 통해 수변완충지대 대상지 토지소유주에게 기술적·경제적 지원을 제공하여 완충지대 기능이 유지·보전·향상되도록 노력
 ○ 일본은 1990년대 중반부터 수변완충지대의 효율적 조성을 위한 노력을 기울였으며, 일본 오사카·산양하천의 수변 Tin(/ecotone)을 비롯해 자연형 하천완복의 일부로 수변구역에 관한 연구를 활발히 진행
 ○ 유럽에서도 수변지역을 홍수관리, 비점오염원 관리, 생태계 보호 등 다양한 기능과 가치를 지닌 공간으로 인식하고 관리(168)

168) 국립환경과학원, 2008, 수변생태구역 조성 및 관리방안 연구.
3-4. 기후변화에 취약한 수생태계 관리 및 생물다양성 보전

가. 현황 및 문제점

☐ 기후변화에 따른 수생태계의 영향이 높아짐에 따른 적응대책 마련 필요

☐ 기후변화에 의한 수온 및 수문사상(유출)의 변화는 수문, 수질 및 수생태계에 영향을 미쳐 물환경 관리 전반의 어려움이 커질 것으로 전망

- 기후변화에 의한 수온 및 수문변화로 인해 수생태계의 종다양성 감소, 지리적 분포 및 균집 변화 발생 가능

• 우리나라 하천의 냉수성 어종인 열목어, 금강모치, 독중개 및 한둑중개 등의 서식처가 감소할 것으로 예상(169)

자료: 국립환경과학원, 2014, 지면모델을 이용한 기후변화 물환경 통합 영향평가 모델 개발(II)

<그림 3-4-1> DSPIR을 이용한 기후변화와 수생태계 원인결과 관계 분석

169) 주기재 등, 2008, “기후변화와 담수 생태계: 변화와 대응”
기후변화에 대응 수생태 관리 역량강화를 위해 수생태계에 대한 정량적인 기후변화 영향평가 및 취약성 분석에 기반한 국가차원의 적응대책 마련 필요

- IPCC(Intergovernmental Panel on Climate Change)에서는 기후변화에 따른 수문, 수질, 수생태의 변화를 진단할 수 있는 지표를 마련할 것을 각 국에 권고
- 기후변화에 따른 과학적인 물환경 통합 영향평가 및 취약성 분석 지표개발 및 이를 이용한 정책지원 필요

지표: 국립환경과학원, 2012, 기후변화에 따른 수질 및 수생태 영향평가 모델개발 (RCP 8.5 배출 시나리오에 따른 미래 담수 어종 서석처 부적합종 비율은 영산강, 금강, 낙동강, 금강 순으로 높아짐)

171) RCP 8.5 배출 시나리오에 따른 미래 담수 어종 서석처 부적합종 비율은 영산강, 금강, 낙동강, 금강 순으로 높아짐

《그림 3-4-2》기후변화에 따른 수온 및 수생태계 영향평가 ('11~'12)
□ 야생생물 보호 기본계획 등에 따라 멸종위기 담수어류 증식 방류, 보호구역 지정 등을 추진 중

- 현재 「야생생물 보호 및 관리에 관한 법률」에 따라 야생생물 보호 기본계획 수립, 멸종위기종 보전대책 수립, 멸종위기종 포획·채취 등의 금지, 멸종위기종 특별보호구역 지정 등의 정책을 시행
 - 2006년 멸종위기 야생동·식물 증식·복원 종합계획을 수립하면서 국내 멸종위기 야생생물의 관리를 위한 기반을 마련
 - 2015년 현재 국내 200여종의 담수어류 중 멸종위기 야생생물 1급은 감돌고기와 흰수마자 등을 포함하여 9종, 2급은 가는돌고기와 가시고기 등 16종으로 총 25종이 지정

- 2013년 수생태계 건강성 조사·평가 결과, 멸종위기종 1급인 흰수마자와 임실납자루의 서식지분포가 최근 크게 감소
 - 임실납자루는 2008년 이후 조사지점이 늘어나면서 출현지점이 11개 지점 (2009년)으로 증가하였으나 2013년에는 1개 지점에서만 채집

- 이에 환경부는 수생태계 건강성 회복을 위한 노력의 일환으로 멸종위기 담수어류 복원 및 다양성 보전 사업을 추진 중
 - 그간 10개 하천에 총 8개종, 약 9만 마리의 멸종위기 담수어류를 증식·방류

□ 서식처 등 생물종 보호·복원 중요 요소에 대한 고려 미흡

- 어류의 증식·복원을 위해서는 서식처 복원이 우선되어야 하나 그동안 증식·방류사업에서는 이에 대한 고려가 미흡
 - 방류시점에는 해당 어종의 서식에 적합한 환경이었으나, 이후 인위적 교란이 발생하여 서식처가 훼손되는 경우도 발견

- 복원 효과를 정확히 평가할 수 있는 기준이 마련되지 않은 문제점도 발견

- 기후변화, 대규모 하천사업 등 다양한 원인에 의해 수환경의 자연적·인위적 변화가 빈번해지고 있어, 이를 고려한 멸종위기 담수어류 보전 대책이 필요
다. 주요대책

- 기후변화진단 물환경 지표 개발
- 멸종위기 담수어류의 보전관리 대책 마련
- 담수 생물 조사・발굴・연구・전시 및 대국민 교육・홍보
- 특이종 출현 및 발견에 따른 긴급조사 및 대응계획 수립

- 기후변화진단 물환경 지표 및 영향평가 모델 개발
 - 기후변화에 따른 수생태의 변화를 진단할 수 있는 지표 개발
 - 기후변화에 따른 과학적인 물환경 통합 영향평가 및 취약성 분석 모델 개발 및 이를 이용한 적응대책 수립

- 멸종위기 담수어류의 자생 변식능력을 높이는 방향으로 보전・관리 대책을 전개
 - 향후 멸종위기 담수어류의 보호・복원 정책은 기존 단순 증식・방류 방식에서 탈피하여 멸종위기종이 자생하여 번식할 수 있도록 서식처 보호・복원에 중점을 두고 전개
 - 멸종위기 담수어류가 서식하고 있는 지역은 「야생동식물보호법」제27조・제33조 야생생물 (특별)보호구역이나 「자연환경보전법」제12조 생태경관 보전지역 등 보호구역으로 지정하여 관리하는 방안을 검토
- 분포면적이나 개체수가 줄어드는 종에 대해서도 우선순위를 설정하여 서식처 복원사업을 전개하며, 필요 시 인공중식이나 방류도 병행

- 또한 기후변화, 하천사업 등 수환경 변화에 따른 생물군집의 변화를 관찰하고 변화 추이를 분석하기 위한 기초자료 수집에 집중

- 담수생물 조사 발굴 연구·전시 및 대국민 교육·홍보

 - 담수생물자원 조사 및 발굴
 - 전국담수지역 조사를 통한 신종 및 미기록종 100종 조사발굴
 - 수집된 생물자원에 대해 분류연구를 통해 희귀종, 외래종 및 주요 자생 생물의 실제 규명, 미발굴 생물자원을 발굴 및 생물표본 확보

 - 담수생물활용기반구축
 - 한반도 고유/자생생물의 형태 및 유전정보를 단계적으로 확보·분석하여 계통유연관계 파악, 생물산업분야에서 원천소재로 활용할 수 있는 기반 구축
 - 야생 생물자원 공여기반 시스템과 연계하여 21세기 핵심 산업 중 하나인 생물산업/환경산업(BT/ET)의 지원 및 활성화에 기여

 - 국립낙동강생물자원관을 활용한 담수생물 대국민 교육 및 홍보
 - 국립낙동강생물자원관을 방문한 관람객에게 최적의 관람서비스를 제공할 수 있는 체험 및 전시시설 운영
 - 고품격의 전시문화 창출을 위하여 자원관 연구성과 및 생물자원활용에 대한 최신 자료를 토대로 전시관을 찾는 고객에게 지속적인 볼거리 제공
 - 국내 유일의 담수생물자원 연구 중심기관으로서 대국민 담수생물자원 및 생물다양성 보전의 중요성을 인지할 수 있는 교육 서비스 제공
특이종 출현 및 발견에 따른 긴급조사 및 대응계획 수립

- 특이종 출현 및 발견에 따른 국민의 위험인식을 상승할 경우 이를 저감하기 위하여 정부차원의 긴급 위험성 조사 및 연구체계 수립
- 특이종 출현 및 발견에 따라 단계별로 취해야하는 긴급대응 가이드라인 또는 위험정보전달전략 등의 계획 수립

다. 향후 추진 일정

- 기후변화진단 물환경 지표 및 수생태 취약성모형 개발(~’20)
- 멸종위기 담수어류의 자생·번식능력을 높이는 방향으로 보전·관리 대책 전개
 - 수계별 멸종위기종 서식현황 조사 및 보호·복원 우선순위 평가(’17~’20)
 - 멸종위기종 보호·복원사업 성과 평가 및 관리방안 마련(’16~’18)
 - 멸종위기종 서식처 보전 마스터플랜 및 세부 시행계획 마련(’16~’18)
 - 멸종위기종 서식지역 보호구역 지정방안 검토(’18~계속)
 - 멸종위기종 서식처 복원·복원사업 추진(’18~계속)
3-5. 수생태계 서비스 확인 및 가치 측정

가. 현황 및 문제점

- 국제적으로 정책결정 과정에서 생태계 서비스에 대한 인식 및 반영의 필요성이 강조되고 있음\(^{172}\)
 - 생태계 서비스(ecological service)란 인간이 생태계로부터 얻는 편익을 의미하는 것으로, 유형 및 무형의 이익뿐만 아니라 직접 또는 간접편익을 망라(지지서비스, 조절서비스, 공급/문화서비스)\(^{173}\)

![생태계 서비스 종류](그림3-5-1)

한국환경정책평가연구원, 2014, 생태계서비스 측정체계 기반구축 I: 하천생태계를 중심으로

\(^{172}\) 한국환경정책평가연구원, 2014, 생태계서비스 측정체계 기반구축 I: 하천생태계를 중심으로

\(^{173}\) UNEP, 2005, Millennium Ecosystem Assessment
하천생태계의 문화서비스: 생태관광, 휴양/레저, 교육/과학, 경관미, 종교/문화유산

지역기구를 중심으로 생태계 서비스 가치 평가를 위한 기본체계를 구축하는 작업을 진행

- 2005년 UNEP의 새천년생태평가(MEA)에서는 생태계가 제공하는 기능·서비스와 인간후생 간의 연결고리를 제시
- 생태계 서비스 관점에서 의사결정 지원을 위한 과학적 근거를 제시
- 2010년 UNEP/유럽연합 주도의 생물다양성경제학(TEEB)에서는 보고서는 위의 연장선에서 생태계기능, 경제계 및 의사결정 간의 상관관계를 연구
- 현재 유럽환경청 주도로 생태계서비스 분류체계 개발 및 시범사업이 진행 중이며, 경제계와 연계 가능하도록 분류체계를 설계할 계획임

네국내에서는 담수생태계의 서비스에 대한 인식이나 연구가 미비

- 하천, 해양, 그린벨트, 산림 등의 분야에서 생태계 서비스를 측정·평가하는 기초연구가 일부 수행됨
- 아직 초기단계의 연구로, 정책적 관점에서 생태계 서비스의 개념 및 활용성에 대한 합의가 부족한 상황
- 특히, 생태계 서비스를 측정·평가하기 위한 기초적인 통계자료가 미비
나. 주요대책

- 물환경 부문 생태계 서비스 개념모델 구축
- 수생태계 서비스 가치 평가 착수
- 분야간 생태계 서비스 관련 자료의 공동 활용체계 구축
- 생태계 서비스를 고려한 정책·사업 추진방안 연구

- 물환경 부문 생태계 서비스 개념모델 구축
 - 물환경과 관련된 생태계 서비스 정의 및 분류체계 확립
 - 하천, 호수, 숲지 등 물환경 부문의 생태계 서비스 정의 및 분류체계 구성을 위한 연구 수행

- 수생태계 서비스 가치 평가 착수
 - 실생활에 밀접한 수생태계 서비스 확인 및 가치 평가
 - 맑은 물 공급, 홍수·가뭄피해 저감 등 실생활에 밀접한 부문을 중심으로 수생태계 서비스의 종류·범위 확인 및 경제적 가치 측정

- 분야간 생태계 서비스 관련 자료의 공동 활용체계 구축
 - 생태계 서비스 관련 기초자료 수집 및 공동활용체계 구축
 - 생태계 서비스 가치 평가에 필요한 기초자료 수집·구축
 - 자료의 일관성·정확성 제고 및 불확실성 개선 작업(연구) 지속 추진
 - 해양수산조경 등 연관 분야와 생태계 서비스 관련 자료의 공동활용을 위한 플랫폼 구축방안 검토

- 생태계 서비스를 고려한 정책·사업 추진방안 연구
 - 물환경 정책·사업에 따른 생태계 서비스 가치변화 분석
 - 축적된 연구성과를 토대로 수변생태벨트 조성사업을 비롯한 물환경 관리 정책·사업에 추진에 따른 생태계 서비스 가치변화 분석
다. 향후 추진 일정

- 생태계 서비스를 고려한 정책·사업 추진방안 연구
 - 장기적으로 생태계 서비스를 고려(반영)한 국가 정책·사업의 의사결정 지원 방안 제시

- 물환경 정책·사업에 따른 생태계 서비스 가치변화 분석
 - 생태계 서비스를 고려한 정책·사업 수립방안 연구

해외에서도 생태계 서비스 고려한 물관리 정책방안에 대한 연구 차원의 검토가 진행 중임

○ 2009년 미국 환경보호청(EPA)의 과학자문위원회는 생태계 및 생태계 서비스 보호정책의 가치평가 방안에 대한 보고서를 발표(174)
 - 과학자문위원회는 확장통합 접근법을 통해 EPA의 제도·사업 등이 생태계에 미치는 영향 및 그 가치 변화를 평가할 것을 권고
 - 세부적으로 인간과 사회에 가장 중요한 결과를 가져올 생태계 반응(ecological response)을 파악하고, 가치평가와 가장 밀접히 관련된 생태계 반응을 예상하여, 이용 가능한 다양한 가치 평가 방법을 사용하여 생태계 및 생태계 서비스를 보호하는 정책사업의 가치를 평가할 것을 EPA에 주문
 - 과학자문위원회는 또한 생태계 특성 및 생태계 서비스의 가치를 평가할 수 있는 개념 모델을 구축하고, 과학적으로 올바른 정보를 이끌어 지역 자원의 생태계 서비스 평가 사례연구를 수행하며, 환경 분야의 생태계 서비스의 측정에만 매달리지 않도록 하는 등의 국가 법률제정 과정에서의 세부 이행방안을 제시

○ 미국 수자원 인프라 관리를 담당하는 미육군공병단(USACE)은 생태계 재화 및 서비스 (ecological goods and services)를 토목사업의 계획수립 시 활용하는 방안을 연구 중(175)
 - 미육군공병단이 생태계 재화서비스에 관심을 가지는 이유는 생태계를 비롯한 자연 자원을 적절하게 관리하여 투자대비 수익률을 최대화할 수 있으며, 수자원 인프라 계획 및 자연 자원 관리에 따른 사회적 편익을 더 잘 설명할 수 있기 때문
미육군공병단은 생태계 재화서비스를 측정하기 위한 개념모델을 구축하였으며, 이를 단계적인 의사결정 과정에 연계하여 사용하는 방안을 모색 중임.

◇ 덩수어류 폐사사고 대응 해외사례 (미국 플로리다 주)\(^{176}\)
 ○ 대부분의 어류 폐사사고(fish kill)는 여름철 강우 뒤에 발생

\[\text{Fish kill graph}\]

\[\begin{array}{c}
\text{Fish kill events} \\
\text{Rainfall (in)}
\end{array}\]

4. 안전한 물환경서비스 제공

<table>
<thead>
<tr>
<th>종전 대책</th>
<th>2025 계획</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 특정수질유해물질 확대 지정·관리
• 업종별 동일 배출기준 설정
• 공공수역(상수원) 중심 위태성 관리
• 하천지점 목표 수질
• 오염원저감 중심 녹조관리</td>
<td>• 특정수질유해물질+감시물질 지정
• 환경영향을 고려한 개별 사업장별 배출기준 설정
• 수질오염사고 취약지역 집중관리 (수질집중측정센터 확대)
• 4대강 보에 특화된 수질목표 설정
• 종합적 녹조대응 (오염원저감, 유속확보, 친수경보제 등)</td>
</tr>
</tbody>
</table>

4-1. 감시물질 도입 및 수질오염물질 지정 · 관리 강화

가. 현황 및 문제점

- 특정수질유해물질 배출사업장수 및 폐수방류량이 지속적으로 증가179)
 - '06년 BOD 방류부하량은 68천kg/일에서 '12년 19.8천kg/일로 3.4배 감소
 - 반면 같은 기간 동안 특정수질유해물질 배출사업장수는 1.4배 증가하고
 특정폐수방류량은 5.9배로 지속적으로 증가함

179) 환경부, 2007∼2014, 공장폐수의 발생과 처리
제 2차 물환경관리 기본계획 부록

제 2부

5 대 핵심산업별 주요 과제

190

MINISTRY OF ENVIRONMENT

[그림 4-1-1] 연도별 특정수질오염물질 배출시설수 및 발생량

- 일부 공단부근의 유해물질 농도가 청정지역의 기준보다 높은 농도로 나타 나는 경우 일부 발생

〈표 4-1-1〉 낙동강 주요 산단하천 측정지점의 특정수질유해물질 농도(청정지역 기준 초과농도)

<table>
<thead>
<tr>
<th>공단</th>
<th>카드뮴(mg/L)</th>
<th>시안(mg/L)</th>
<th>납(mg/L)</th>
<th>6가크롬(mg/L)</th>
<th>비소(mg/L)</th>
<th>수은(mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>성서공단</td>
<td>0/162</td>
<td>0/162</td>
<td>1/162</td>
<td>0/162</td>
<td>4/162</td>
<td>2/162</td>
</tr>
<tr>
<td>대구검단</td>
<td>0/162</td>
<td>0/162</td>
<td>4/162</td>
<td>0/162</td>
<td>4/162</td>
<td>0/162</td>
</tr>
<tr>
<td>대구3공단</td>
<td>1/162</td>
<td>12/162</td>
<td>1/162</td>
<td>1/162</td>
<td>3/162</td>
<td>2/162</td>
</tr>
</tbody>
</table>

자료: 물환경정보시스템 산단하천 측정자료('00-'13년 월 자료 활용)

특정수질유해물질(28종) 중심의 제한적 산업폐수 관리(※ 참고자료 4-1-1: 28종 특정수질유해물질 목록)

- (관리대상물질 범위) 생산공정의 신규사용 유해물질 증가추세에 비해 관리 대상 특정수질유해물질(이하 “특정물질”)은 28종에 불과하게 관리대상 미흡180

180) 우선물질(priority substances)의 종류가 미국은 126종, 독일은 45종
현행 산화율이 낮은 COD 지표를 난분해성유기물질 및 총유기물량(미량 유기물질 포함)을 제대로 측정할 수 있는 TOC 항목으로 변경 필요

- (유해물질 관리) '90년대 유해물질이 수계에 미치는 영향을 체계적으로 반영 하는 시스템 부재하여 합리적인 배출허용기준 미설정 등 관리체계 미비 \(181)\)
- (현황과약미흡) 특정수질유해물질 배출시설에 대한 정확한 현황과약 미흡 \(182)\)
 - (개요) 표본조사(60개, ’12), 1종 사업장 전수조사(319개, ’13) 실시
 - (결과) 전체 379개소중 115개 업체(30%)에서 무허가 특정물질 검출 \(183)\)
 - 기존 수질오염물질의 경우 분석기술의 한계나 개별 물질의 위해도 자료 부족으로 폐농류, 브롬화합물, 염소화합물 등 집합적 성격의 화합물을 수질 오염물질로 지정하여 관리
 - 화합물로 규제하는 것은 개별 화학물질의 위해성 정도를 정확하게 반영하기 힘들고 유해하지 않은 개별 물질까지 불합리하게 규제하는 문제가 있음

폐수배출시설 허가체계의 한계

- (사전검토) 사업장 허가신청에 대해 단시일(10일) 내 서류검토로 평가함에 따라 실제 공정에서 배출 \(184)\)되는 오염물질 확인에 제약
- (사후관리) 허가서 발급 후 시운전과정 또는 실제 운영과정에서 허가대상 항목만을 검사·확인함에 따라 사업장 사후관리가 부실해질 우려

획일적인 특정물질배출시설 관리방식

- (현실과 괴리된 배출시설관리체계) 제조공정에서 특정물질(28종) 중 어느 한 항목이 원폐수에서 단 1회만 기존 이상 검출되어도 다른 대안 없이 사업장을 폐쇄해야 하는 문제 야기
 - 기존 한정한 배출시설에서 예상치 못한 사유로 공정 중 발생한 특정물질에 대해 원폐수 규제를 엄격히 적용하는 것은 다소 불합리

\(181\) 또한 (현행) 특정물질 이외의 유해물질에 대한 관리범위, 배출허용기준 등이 마련되지 않음
\(182\) 환경부 물환경정책국, 2015, 2015년도 업무추진 계획
\(183\) 임지제한 지역내는 22개 업체에서 검출, 폐쇄명령 등 조치
\(184\) 지역까지 허가업무 담당자가 활용할 수 있는 업무 일련의 없어 사업장 일부시설 및 허가대상물질이 허가누락되는 사례 빈번
- (사고발생에 취약) 공정상 발생하는 폐수관리를 강화하더라도 예상치 못한 사고로 인해 폐수가 누출되는 경우 대응할 수 있는 체계 미비
 - 수질법상 완충저류시설은 일정규모 이상의 산단 및 공업지역에만 설치가 의무화되어 있음
 - (소량·소규모 배출시설 관리 미비) '15년 기준 소량·소규모 배출시설(4, 5 종)이 차지하는 사업장수는 전체의 95.6%이며 폐수발생량은 26.6%, 폐수 방류량 13.2%임에도 불구하고 관리의 사각지대
 - 상당수의 소량·소규모시설이 위탁, 연계처리, 폐수처리업 등에 의한 처리를 하고 있으나 처리수준 및 처리율이 낮고, 관리가 부재함

- 현행 하수 및 폐수종말처리시설의 관리 선진화 필요
 - 처리구역 내 독성물질, 항생제 등 다양한 물질이 발생 및 유입되고 있으나 이를 제어할 방법 부재
 - 유해물질에 대한 관리기준이나 방안 없이 연계처리 시설의 전처리 규정에 따라 처리하고 있어 유해물질 관리 및 처리 미흡
 - 전처리규정의 유입원수에 대한 관리 규정 및 유해물질 방류수 기준 마련 필요
 - 폐종 및 하종에서 방류되는 총인 및 총질소 등의 영향으로 녹조현상 발생에 따른 인 및 질소 기준 강화 필요

<table>
<thead>
<tr>
<th>종별</th>
<th>1종</th>
<th>2종</th>
<th>3종</th>
<th>4종</th>
<th>5종</th>
</tr>
</thead>
<tbody>
<tr>
<td>배출업소수(개)</td>
<td>46,980</td>
<td>358 (0.7%)</td>
<td>536 (1.1%)</td>
<td>1,273 (2.6%)</td>
<td>2,375 (4.8%)</td>
</tr>
<tr>
<td>폐수발생량(천m³/일)</td>
<td>5,269</td>
<td>2,889 (54.8%)</td>
<td>507 (9.6%)</td>
<td>468 (8.9%)</td>
<td>266 (5.0%)</td>
</tr>
<tr>
<td>폐수방류량(천m³/일)</td>
<td>3,515</td>
<td>2,229 (63.4%)</td>
<td>448 (12.7%)</td>
<td>374 (10.6%)</td>
<td>217 (6.2%)</td>
</tr>
</tbody>
</table>

<표 4-1-2> 업종별 배출업소수, 폐수발생량, 방류량 현황

185) 대상수에 비해 지도·점검 인력 한계, 영세성으로 인한 처리의 한계 등
- ’80년대 수질오염우심지역 특별대책 일환으로 하천 수질개선을 위해 6개 산업단지(경산, 진주, 청주, 양산, 여수, 달성)에 설치된 국가폐수종말처리 시설(민간위탁 운영중)이 노후화됨으로써 개량사업 필요
 - 시설들의 개량사업을 민간투자사업으로 추진하기 위한 기본계획 수립, 타당성 분석 실시
 - 6개 각 시설에 대하여 전문기관의 기술진단 및 타당성분석 등을 통해 개량 대상시설 산정

유해물질 제거를 위한 최적가용기법(BAT) 적용 필요
- 일반오염물질 제거 중심의 공정과 관리로 인해 기존 유해물질 및 새로운 유해물질을 완벽하게 저감시키기에는 한계가 있음
 - 비소의 경우, 조사된 25개 하수처리장 중 처리효율이 70%가 넘기 어려운 실정임(186)

〈표 4-1-3〉공장폐수 연계 및 일반 하수처리장에서 방류되는 오염물질 현황

<table>
<thead>
<tr>
<th>구분</th>
<th>공장폐수 연계처리</th>
<th>비연계처리</th>
</tr>
</thead>
<tbody>
<tr>
<td>중금속류</td>
<td>바륨, 카드뮴, 구리, 철, 망간, 니켈, 아연(7개)</td>
<td>바륨, 구리, 철, 망간, 니켈, 아연(6개)</td>
</tr>
<tr>
<td>휘발성유기화합물</td>
<td>노말헥산추출물질(광유류, 동식물유지류), 폐농류, 디에틸헥실프탈레이트, 폴알데하이드, 툴루엔(6개)</td>
<td></td>
</tr>
</tbody>
</table>

자료:국립환경과학원, 2014, 공공하수처리시설 수질유해물질 관리방안 연구(1)

- 대부분의 산업배출시설은 2차처리(물리, 화학처리) 수준(81.5%)에 머무르고 있음

〈표 4-1-4〉배출시설의 처리시설 유형

<table>
<thead>
<tr>
<th>대상수</th>
<th>처리시설유형</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>물리처리(1차)</td>
</tr>
<tr>
<td>32,358</td>
<td>3,927(12.1%)</td>
</tr>
</tbody>
</table>

186) 국립환경과학원, 2014, 공공하수처리시설 수질유해물질 관리방안 연구(1)
나. 주요대책

- 환경영향 유해물질 배출감축 시스템 구축
- 검증식 허가제도 도입
- 특정수질유해물질 배출시설 관리 합리화
- 유해물질 배출 저감 최적 가용기법 확대

[목록]

다. 환경영향을 고려한 유해물질 배출감축 시스템 구축

유해물질 누적영향 관리

- 위험이능성이 있는 유해물질을 감시물질로 지정하고 배출영향분석을 실시하여 수계별 영향, 업종별 특성 등 유해물질의 누적영향을 고려하여 배출기준을 설정
 • 배출영향분석 : 배출시설에서 배출되는 오염물질 등이 주변수계에 미치는 영향을 조사·분석
- 중장기적으로 각 사업장별 감시물질 배출기준은 배출시설허가 시 별도의 승인절차(환경부장관 또는 지자체장)를 거치는 방안 검토(※ 국외자료 4-1-1: 독일과 미국의 수질유해물질 관리체계)

감시물질 지정 및 제도화

- 1차적으로 국내 유통량이 많고 위험성이 있는 물질을 감시물질로 지정하여 관리대상물질 확대 추진
 • 관리대상물질 = 특정수질유해물질 + 감시물질
- 감시물질 중 위험도가 크고 모니터링 결과 배출수준이 높은 물질은 특정 수질유해물질로 지정 검토
 ◆ 중장기적으로 유해물질 유통량의 변화추이를 감안하여 감시물질 추가 지정을 통해 관리대상물질 확대 검토
- 난분해성 물질저감을 위한 규제항목(TOC 항목 등) 도입
 • 유해물질 외 난분해성 물질저감을 위한 규제항목을 도입하고 이에 따른 지속적인 관리 시행

187) 16년에 스티렌 등 3개 물질을 특정수질유해물질로 추가예정
• 산업폐수개별시설 TOC 배출허용기준, 폐수종말처리장 및 하수처리장 TOC 방류수 설정 및 시행

○ 수질오염물질 중 화합물 분리 규제방안 검토
 - 개별 화학물질의 위해성 정도를 정확히 반영하기 힘든 문제를 해결하기 위해 개별 화학물질로 분리규제 방안 검토

☐ 허가의 사전/사후 검토 강화

○ (허가사전 검토강화)현장 위주의 허가검토 시행
 - 지자체 허가 담당자가 활용할 수 있는 가이드라인 작성
 • ‘폐수배출시설 허가·신고 업무처리지침’(‘96년)을 개정하여 업종별 분류 기준을 상세히 설명하고, 오염도검사 및 허가신청서 작성 등 지자체별·담당자별로 다르게 적용될 수 있는 사항에 대해 유권해석 및 질의·회신 사례를 제시하여 일원화된 관리가 이루어지도록 유도
 - 발생물질 DB 구축배출시설 허가업무의 효율성 제고
 • 현장에서 활용할 수 있도록 업종·공정·원료별 오염물질 배출정보를 제공
 - 지자체 허가업무의 기술검토를 지원하기 위해 전문가 중심의 기술검토단 구성·운영
 • 공정상 발생가능한 오염물질을 검토하여 허가서상의 배출물질에 추가

○ (허가사후 검토강화)허가사항 이행관리 측정
 - 시운전 이후 오염도 검사 시 특정물질 수 항목을 조사하여 허가사항의 실질적인 이행여부 확인 절차
 • 현재는 허가서상 기재된 오염물질만을 대상으로 배출시설의 오염도검사를 실시하므로 허가절차에서 누락된 물질은 사후관리도 부실하게 이루어지는 문제 발생
 - 실제 배출되는 오염물질을 확인하여 허가서 내용과 상이할 경우 변경허가 토록 절차 개선
특정수질유해물질 배출시설 관리 합리화

- 방류수를 철저히 관리하는 경우 원·폐수 규제 대상의 예외로 인정
 - 원료·부원료·제조공정 등이 변경되거나 관계법령에 의거 증설되어 특정물질이 배출되는 기존 입지 시설의 경우에는 원폐수 규제대신 미 검출 수준의 엄격한 배출기준(검출한계 미만)을 예외적으로 적용
 - 28개 특정물질 검출한계 미만 처리, 특정물질 외의 투입물질 성분 등 공정 특성을 감안한 지정물질 추가관리로 실질적인 수체영향 최소화

- 사고로 인한 특정수질유해물질 수계배출 차단 강화
 - 배출허용기준 등 초과시 즉시 완충저류시설로 유입, 해당 공정 폐수는 별도 분리하여 위탁처리 등 조치
 - 생물감시장치가 포함된 수질자동측정기기 부착 등 모니터링 실시
 - 제3의 전문기관이 특정감시시설에 대해 수질오염방지시설 유입 전후의 수질, 방류수역의 수질·생태계 상황을 모니터링하여 기록을 보관토록 함

- 손익공유형(BTO-a) 방식의 민간투자사업으로 국가 폐수종말처리시설 개량 및 위탁운영

유해물질 배출 저감 최적 가용기법 확대

- 최적가용기법(BAT) 기반의 유해물질 처리 고도화
 - 각 업종별 특성을 반영한 최적가용기법 도입 및 개선 확대

- 최적가용기법(BAT) 활용 가이드라인 마련
 - 82개 배출시설별 BAT 가이드라인 마련을 통한 BAT 적용 정착

- 유해물질누출사고에 대비한 완충저류시설의 순차적 설치
 - 유해물질 사고발생에 대한 안전조치 마련을 위해서 설치 우선순위에 따라 완충저류시설을 설치하고 이를 통해 유해물질에 의한 피해저감 제고

188) BTO-a(손익공유형) : 민간 투자금액의 70%, 운영비 100%를 보전하되, 수익률은 3.7~4.0%로 낮추고 초과이익 발생시 공유(정부 7, 민간 3)
다. 향후 추진 일정

- 유해물질 배출현황 모니터링 및 DB 구축(‘16∼’25)
- 허가의 사전사후 검토 강화
 - 폐수배출시설 허가·신고 가이드라인 개정(‘16년)
 - 업종·공정별 발생물질 D/B 구축(‘17년)
- 수질민감지역, 공단주변 등의 유해물질 누출감시체계 확립 및 운영(‘17∼’25)
- 난분해성 물질저감을 위한 규제항목(TOC 항목 등) 도입(‘17∼’25)
- 국가 폐수종말처리시설 개량(‘16∼’17) 및 위탁운영(‘18∼’25)
- 최적가용기법(BAT) 기반의 유해물질 처리 고도화 및 활용가이드라인 마련(‘17∼’25)
- 유해물질 누출사고에 대비한 완충저류시설의 수차적 설치(‘16∼’25)

참고자료 4-1-1

<table>
<thead>
<tr>
<th>물질명</th>
<th>지정일</th>
<th>시행일</th>
</tr>
</thead>
<tbody>
<tr>
<td>구리와 그 화합물</td>
<td>'91.2.2</td>
<td>'91.2.2</td>
</tr>
<tr>
<td>납과 그 화합물</td>
<td>'91.2.2</td>
<td>'91.2.2</td>
</tr>
<tr>
<td>비소와 그 화합물</td>
<td>'91.2.2</td>
<td>'91.2.2</td>
</tr>
<tr>
<td>수은과 그 화합물</td>
<td>'91.2.2</td>
<td>'91.2.2</td>
</tr>
<tr>
<td>시안화합물</td>
<td>'91.2.2</td>
<td>'91.2.2</td>
</tr>
<tr>
<td>유기인 화합물</td>
<td>'91.2.2</td>
<td>'91.2.2</td>
</tr>
<tr>
<td>6가크롬 화합물</td>
<td>'91.2.2</td>
<td>'91.2.2</td>
</tr>
<tr>
<td>카드뮴과 그 화합물</td>
<td>'91.2.2</td>
<td>'91.2.2</td>
</tr>
<tr>
<td>테트라클로로에틸렌</td>
<td>'91.2.2</td>
<td>'91.2.2</td>
</tr>
<tr>
<td>트리클로로에틸렌</td>
<td>'91.2.2</td>
<td>'91.2.2</td>
</tr>
<tr>
<td>물질명</td>
<td>지정일</td>
<td>시행일</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>11. 폐놀류</td>
<td>'91.2.2</td>
<td>'91.2.2</td>
</tr>
<tr>
<td>12. 폴리클로로네이티드바이페닐</td>
<td>'91.2.2</td>
<td>'91.2.2</td>
</tr>
<tr>
<td>13. 셜레늄과 그 화합물</td>
<td>'99.8.9</td>
<td>'99.8.9</td>
</tr>
<tr>
<td>14. 벤젠</td>
<td>'99.8.9</td>
<td>'99.8.9</td>
</tr>
<tr>
<td>15. 사염화탄소</td>
<td>'99.8.9</td>
<td>'99.8.9</td>
</tr>
<tr>
<td>16. 디클로로에탄</td>
<td>'99.8.9</td>
<td>'99.8.9</td>
</tr>
<tr>
<td>17. 1,1-디클로로에틸렌</td>
<td>'99.8.9</td>
<td>'99.8.9</td>
</tr>
<tr>
<td>18. 1,2-디클로로에탄</td>
<td>'06.1.2</td>
<td>'06.1.2</td>
</tr>
<tr>
<td>19. 클로로포름</td>
<td>'06.1.2</td>
<td>'06.1.2</td>
</tr>
<tr>
<td>20. 1,4-다이옥산</td>
<td>'08.10.29</td>
<td>'09.1.30</td>
</tr>
<tr>
<td>21. 디에틸헥실프탈레이트(DEPH)</td>
<td>'08.10.29</td>
<td>'09.1.30</td>
</tr>
<tr>
<td>22. 염화비닐</td>
<td>'08.10.29</td>
<td>'09.1.30</td>
</tr>
<tr>
<td>23. 아크릴로니트릴</td>
<td>'08.10.29</td>
<td>'09.1.30</td>
</tr>
<tr>
<td>24. 브로모포름</td>
<td>'08.10.29</td>
<td>'09.1.30</td>
</tr>
<tr>
<td>25. 아크릴아미드</td>
<td>'10.10.1</td>
<td>'10.10.1</td>
</tr>
<tr>
<td>26. 나프탈렌</td>
<td>'13.9.5</td>
<td>'16.1.1</td>
</tr>
<tr>
<td>27. 폼알데하이드</td>
<td>'13.9.5</td>
<td>'16.1.1</td>
</tr>
<tr>
<td>28. 에피클로로하이드린</td>
<td>'13.9.5</td>
<td>'16.1.1</td>
</tr>
</tbody>
</table>

국외 사례 4-1-1

 독일의 수질유해물질 관리체계

○ 오염물질의 배출허용기준
 - 독일 법률에서 정한 55개 오염물질(유해물질+일반물질)에 대하여 57개 업종별로 규제물질과
 배출기준을 각각 구분하여 제시

 예시 : 석유정제업

<table>
<thead>
<tr>
<th>대상물질(5개)</th>
<th>배출기준(단위: mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD</td>
<td>80</td>
</tr>
<tr>
<td>BOD₅</td>
<td>25</td>
</tr>
<tr>
<td>총질소(N₅₀)</td>
<td>40</td>
</tr>
<tr>
<td>총인</td>
<td>1.5</td>
</tr>
<tr>
<td>총탄화수소</td>
<td>2</td>
</tr>
</tbody>
</table>
최종 배출허용기준(ELV: Emission Limit Values)은 독일의 법령과 EU BAT 지침서상 배출 기준을 비교 후 더 엄격한 기준을 허가조건에 적용

수질위해물질 분류 및 관리
- 수질위해물질을 위해성에 상응하여 3개의 등급으로 구분
 - WHC(Water Hazard Classes) 1: 강 수질위해성, WHC 2: 중 수질위해성, WHC 3: 약 수질위해성
- 연방수질법은 위해물질에 대한 예방원칙, 운영자의 기본의무를 규정하며, 구체적인 안전관리 규정(공지절차, 적절성 판단)은 지자체(Lander)의 행정규칙(Ordinance)에서 세부적으로 정하도록 함

미국의 수질위해물질 관리체계
- 독성물질 목록(list of toxic pollutants)
 - 미국 청정수법(clean water act)에서 규정된 사항으로서 배출허용기준과 허가체계의 토대가 되는 물질목록
 - 화학물질의 그룹형태로 총 65개의 독성물질을 정의(예: 할로겐화합물)
- 우선물질 선정
 - 독성물질목록을 기초로 해서 실질적으로 관리가 가능한 개별 화학물질 형태인 우선물질 (priority pollutants) 126종 선정
○ 업종별 규제항목 리스트 작성
- 우선물질에 대하여 57개 산업분류에 따라 업종별 특성을 고려한 규제항목 리스트* 마련 (guidance)하고 배출기준의 상한선을 국가차원\(^{190}\)에서 설정
 * (예시) 제약업종은 전체 126개 우선순위 물질 중 39종 규제

○ 개별 사업장의 배출기준 설정
- 개별 사업장의 배출기준은 상한선 내에서허가권자가 배출영향분석*을 통한 허가서에 반영
 * 배출시설에서 배출되는 오염물질 등이 주변수계에 미치는 영향을 조사분석

189) Ordinance on requirements for the discharge of waste water into waters(Waste Water Ordinance-AbwV, 2004.6.17)
190) code of federal regulation, 40 CFR part 400~699
4-2. TOC 중심의 유기물질 관리 강화

가. 현황 및 문제점

- 기후변화, 도시화 및 산업화, 조류발생 등으로 수체 내 총 유기물질이 증가하고 있음
 - BOD 중심의 규제와 환경기초시설 확충 등으로 생분해성 유기물질은 개선되었으나 난분해성 유기물질을 포함한 총 유기물질은 증가추세

![그림 4-2-1] '11∼'14년 국가수질측정망 574개의 TOC 연평균 값 변화(99% CI)

- 수체 내 유기물질은 먹는 물의 안전성과 수생태계 악영향을 미침
 - (용존산소 고갈) 수체 내 유기물질의 증가는 용존산소의 고갈을 일으키며 물의 자정능력 훼손, 수생태계의 건강성 파괴, 더 나아가 수생생물의 사멸을 초래할 수 있음191)

191) 환경부, 2008
(독성 증가) 인위적 요인(비료, 살충제, 제초제, 계면활성제, 공정에서 사용되는 용해제 등)으로부터 유입된 난분해성 독성 유기물질은 먹이사슬을 통해 어류의 독성생물농축을 일으켜, 결과적으로 인간의 건강에 위해성이 높음

(먹는물 안전성위협) 용존유기탄소(DOC)는 발암성을 유발하는 트리할로메탄(THM) 생성의 전구물질로 작용하며, 정수 후 제거되지 않은 유기물질은 관내 미생물의 성장을 가능하게 하여 관의 부식, 맛, 색 등의 발생을 유발

(수처리의 효율저하) 기존의 수처리 기술로 제거가 잘 이루어지지 못하고 설치된 막의 폐쇄 및 응집 효과를 낮추는 등 수처리비용을 증가시키는데 기여

현재까지 수체 내 유기물질의 관리는 BOD와 CODMn으로 관리되다가 총 유기물질(TOC) 관리 중심으로 전환 중

현재 수질 목표 달성여부는 하천은 BOD 및 T-P, 호소는 COD 및 T-P 항목으로 평가

수질 및 수생태계 항목으로 TOC 도입(‘13) 및 CODMn 삭제(‘16)

현행 수도목표 기준인 BOD-CODMn만으로는 난분해성 유기물질을 포함한 수체 내 전체 유기물질의 정확한 측정 및 총량관리 어려움

유기물질 측정가능범위는 BOD는 20-40%, CODMn은 30-60%에 불과하여 유기물질의 일부만 제한적으로 측정

192) 토양·산림·조류 등 자연계에서도 배출되지만, 정오염원 방류수에서도 독성물질, 생활계 화학물질, 생활폐수, 계면활성제(LAS), 오염, 토양 등 유해물질 배출

193) Frank R. Spellman, 2013, Handbook of Water and Wastewater Treatment plant operations, Thrid Ed.

194) Panyapinyopol B. et al., 2005
유기물질의 분류체계 (출처: Davis, Peter Spencer)

유기물질의 이론적 총 산소요구량의 재현범위 (예시)

- **BOD₅**: 32.9%
- **BOD∞**: 37.6%
- **CODₘₙ**: 38%
- **CODₙ**: 70.6%
- TOC로 산정한 총산소요구량: 94.1%
- 이론적 유기물의 총산소요구량: 100%

(출처: Henze, Mogens, et al. Wastewater Treatment: Biological and Chemical Processes)

〈그림 4-2-3〉BOD, COD, TOC의 성분비교 예시

- 총 유기물질의 양을 정확히 측정하지 못하는 항목(BOD, CODₘₙ)을 정책 목표로 유지할 경우 하천의 길어진 체류시간과 복합 작용 시 건강성 담보에 애로
- 하천의 보 건설, 기후변화에 따른 유량감소 등 길어진 체류시간 때문에 유기물질의 잠재적 산소소비량이 증가할 수 있음
- 유기물질 관리 범위를 보다 확대하고 강화하기 위해서는 TOC의 체계적이고 중장기적인 관리 및 목표 설정 필요

- 난분해성 유기물질은 자연계 뿐 아니라 점오염원에서도 다량 배출되어 무임승차로 인한 배출규제의 형평성 문제 초래
- 석유화학, 기타화학 등 특정 업종의 폐수배출업소, 하·폐수처리장도 산업 폐수 유입 비중, 음폐수참출수·가축분뇨 연계처리상황에 따라 난분해성 유기물질 주요 배출원으로 작용

나. 주요대책

- TOC를 수질 목표기준으로 설정하여 유기물질 관리 강화
- 오염물질의 수질 향후 환경토목표 ORG에서 TOC로 대체
- 점진적인 TOC 규제기준 도입

□ TOC를 수질 목표기준으로 설정하여 유기물질 관리 강화

- 하천 수질 목표기준에 TOC 도입(‘21년)
 - BOD(하천)·COD(호수) 중심 기준 유기물질 관리의 한계를 극복하고, 수질 변화에 신속 정확하게 대응하는 사전예방적 물관리 추진
 - 중권역 대표지점의 수체 특성, 기존 BOD 목표기준 등을 고려하여 중권역별 수질 목표기준 설정 및 관리계획 수립

- 현행 환경기준 상 TOC 동급별 기준 조정(‘20년)
 - 축적된 TOC 축정값을 토대로 BOD, COD와의 상관성을 분석하고 수체별 특성 및 국외 환경기준 등을 참고하여 기준값 조정

※ ‘20년까지는 현행과 같이 BOD(하천)로 목표기준 달성 여부 평가
제2차 물환경관리 기본계획

제2부
5대 핵심 전략별 주요 과제

표 4-2-1 하천의 생활환경기준 (현행)

<table>
<thead>
<tr>
<th>구분</th>
<th>pH</th>
<th>BOD</th>
<th>COD</th>
<th>TOC</th>
<th>SS</th>
<th>DO</th>
<th>T-P</th>
<th>총대장균수</th>
<th>분원성 대장균수</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia</td>
<td>6.5~8.5</td>
<td>10이하</td>
<td>20이하</td>
<td>2이하</td>
<td>25이하</td>
<td>7.5이상</td>
<td>0.02이하</td>
<td>50이하</td>
<td>100이하</td>
</tr>
<tr>
<td>Ib</td>
<td>6.5~8.5</td>
<td>20이하</td>
<td>40이하</td>
<td>3이하</td>
<td>25이하</td>
<td>5.0이상</td>
<td>0.4이하</td>
<td>500이하</td>
<td>1000이하</td>
</tr>
<tr>
<td>II</td>
<td>6.5~8.5</td>
<td>30이하</td>
<td>50이하</td>
<td>4이하</td>
<td>25이하</td>
<td>5.0이상</td>
<td>0.1이하</td>
<td>1,000이하</td>
<td>2000이하</td>
</tr>
<tr>
<td>III</td>
<td>6.5~8.5</td>
<td>50이하</td>
<td>70이하</td>
<td>5이하</td>
<td>25이하</td>
<td>5.0이상</td>
<td>0.20이하</td>
<td>5,000이하</td>
<td>1,0000이하</td>
</tr>
<tr>
<td>IV</td>
<td>6.0~8.5</td>
<td>80이하</td>
<td>90이하</td>
<td>6이하</td>
<td>100이하</td>
<td>7.5이상</td>
<td>0.3이하</td>
<td>1,000이하</td>
<td>2000이하</td>
</tr>
<tr>
<td>V</td>
<td>6.0~8.5</td>
<td>100이하</td>
<td>110이하</td>
<td>8이하</td>
<td>쓰레기등이 떠있지않을것</td>
<td>2.0이상</td>
<td>0.5이하</td>
<td>5,000이하</td>
<td>1,0000이하</td>
</tr>
<tr>
<td>VI</td>
<td>10초과</td>
<td>11초과</td>
<td>8초과</td>
<td>2.0이하</td>
<td>0.5초과</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

오염총량제 관리대상 물질로 TOC 도입 검토

- 오염총량관리 대상물질의 종류에 대해 TOC 항목의 BOD 대체 또는 추가 여부 결정(‘16년)
 ※ 「수질오염총량제 기본방침(훈령)」부칙2에서 TOC 항목의 대체 또는 추가여부를 지자체에 통보(16년)하도록 규정

- 오염총량관리 관리대상 물질로 TOC 도입 검토
 - 배출허용기준, 방류수 수질기준 설정 등 제반여건이 마련되는 시기를 고려하여 TOC 관리 실시

점진적인 TOC 규제 항목 도입

- I단계 세부도입 방안
 - BAT 적용대상 20개 업종 TOC 전환근거 도입(‘16년~)
 - ’19년부터 COD,Mn와 병행 시행, 단 TOC 초과에 따른 배출부과금 부과 및 행정처분 유의
 - 감시물질 지정 운영제도 마련(‘16년~)
 - TOC를 감시물질로 지정하고, 신규수질물질 도입, 배출허용기준 재검토 등 제도개선 전 단계에 「수질오염물질 감시항목」으로 지정하여 일정기간 조사(모니터링)후 법제화 추진
수질감시항목 관리 지침(훈령) 제정(감시항목 및 분석방법, 조사 및 보고 주기 등)
- TOC 저감 최적가용기법 매뉴얼 작성·배포(‘16년)

2단계 세부도입 방안
- 모든 폐수배출시설 및 폐수종말처리시설로 확대(‘21년)
 - TOC 배출실태 모니터링(‘17~‘19년)
 - 폐수종말처리시설 방류수 수질기준 및 별도배출허용기준 마련(‘20년)
 ※ 1차 설정한 배출허용기준 재검토 및 필요시 개정

〈표 4-2-2〉 별도배출허용기준 고시 현황

<table>
<thead>
<tr>
<th>총계</th>
<th>폐수종말처리시설 구역</th>
<th>공공하수처리시설 구역</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>소계</td>
<td>산업단지</td>
</tr>
<tr>
<td>162</td>
<td>152</td>
<td>87</td>
</tr>
</tbody>
</table>

폐수종말처리시설을 설치·운영 중인 산업단지 175개 중 별도기준이 고시되지 않은 23개 지역에서도 별도배출허용기준 마련 예정

- TMS 측정항목 개정(CODMn → TOC, 20년)
3단계 세부도입 방안
- 배출부과금 및 행정처분 제도 도입('24년), TOC 및 COD\textsubscript{Mn} 중 선택적 적용
4단계 세부도입 방안
- COD\textsubscript{Mn} 폐지 및 TOC 전면 시행('26년)

다. 향후 추진계획

- BAT 사업장에 대한 TOC 전환 근거 도입('16년)
- 수질오염 감시항목 지정·운영 관리 지침 마련('16년)
- TOC 지침 최적가용기법 매뉴얼 작성·배포('16년)
- 폐수종말처리시설 방류수 수질기준 및 별도배출허용기준 마련('20년)
- 배출부과금 및 행정처분 제도 정비('24년)
 - COD\textsubscript{Mn} 폐지 및 TOC 전면 시행('26년)

참고자료 4-2-1

- 공공수역의 TOC 농도 변화
 - 공공수역의 TOC는 2008년부터 측정시작
 - 2008년부터 2014년까지 TOC를 연속적으로 측정한 215개의 측정량 TOC 연평균 농도를
 사용하였을 때(증가후 정제)
- 중권역 대표지점 중 2008년부터 2014년까지 TOC를 연속적으로 측정한 97개의 측정망 TOC 연평균 농도를 사용(감소 후 정체)

- 2011년부터 2014년까지 TOC를 연속적으로 측정한 국가수질측정망 574개의 TOC 연평균 농도를 사용하였을 때(증가)
목표기준에 TOC 도입 시 등급 변동 현황

○ 기본계획상 수질목표 설정 및 중권역별 목표기준 등급 조정 여부

※ 참고: 하천호소 생활환경기준 수질등급 및 변동 현황
- 하천 생활환경기준(검토자료: 114개 중권역 대표지점의 자료)

<table>
<thead>
<tr>
<th>구분</th>
<th>해당 하천 수</th>
<th>BOD 기준</th>
<th>COD 기준</th>
<th>TOC기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>I a</td>
<td>40</td>
<td>6</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>I b</td>
<td>32</td>
<td>44</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>21</td>
<td>20</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>18</td>
<td>21</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>4</td>
<td>12</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>합계</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td></td>
</tr>
</tbody>
</table>

자료: 중권역 대표지점 2012-2015 평균값 사용

- 호소 생활환경 기준(검토자료: 49개 주요호소의 자료)

<table>
<thead>
<tr>
<th>구분</th>
<th>해당 하천 수</th>
<th>COD 기준</th>
<th>TOC기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>I a</td>
<td>1</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>I b</td>
<td>22</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>합계</td>
<td>49</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>

자료: 중권역대표지점 2012-2015 평균값 사용
4-4. 사업장 수질오염의 자율관리기반 마련

가. 현황 및 문제점

○ 현행 수질 및 수생태 법률에 의해 사업자는 수질오염물질을 스스로 측정하거나 측정대행업체로 측정할 수 있도록 임의 규정된(195)
- 현행 자가측정자료는 기본배출부과금 부과시(반기 1회)에 활용 중
 • 기본배출부과금 부과기간 직전에 확정배출량 제출시 필요(측정항목:유기물질(BOD, COD), 부유물질)

- ’90년대 수질분야 자가측정 및 기록 보존 의무사항으로 규정되어 있다가 ’99년도에 기업부담 완화를 위해 임의규정으로 개정되었으며 ’06년에 수질
 TMS 부착의무제도를 도입
 - (TMS부착의무 대상) 1·2종 사업장 및 공동방지시설(200톤 이상), 3종 사업장의 경우 배출허용기준 초과시
 - (TMS부착의무 항목) BOD/COD, SS, T-N, T-P, pH

○ 자가측정은 개별 사업장 배출특성을 파악할 수 있는 정책적 수단이 됨에 따라 사업장별 우선순위에 따라 자가측정의무를 재규정하여 사업장의 배출현황과 관련 규정의 준수상태를 파악 필요
 - 공동방지시설로 폐수 유입 처리하는 폐수배출시설 간의 배출허용기준 초과로 배출부과금 부과 및 행정처분시 부과금 산정방식(배출량, 농도) 등의 합리성
 결여로 분쟁 빈발
 - 공단(하수처리구역)내 폐수배출업체의 고농도 폐수 불법배출 사례 발생, 기준초과 등으로 단지내 폐수 관리 강화 필요

(195) 수질법 제46조(수질오염물질측정)
수질배출부과금 제도는 1983년 도입 이후 부과계수 조정, 일부부과항목 추가 등의 보완은 있었으나 큰 틀의 개선은 이루어지지 않음
- 현행 배출부과금제도는 직접규제 성격이 강하여 배출량 저감에 대한 경제적 유인제도로서의 역할 미흡
 • 배출허용기준 초과시 납부 능력보다 과다한 초과부과금이 부과(형벌적 성격)되어 부과금 납부에 대한 거부감 팽배
※ 최근 5년간(07년~11년) 평균징수율이 10.3%로 환경관련부담금 중 징수율이 가장 낮은 수준
- 기본부과금은 일부 항목(유기물질, SS)에 한정하여 종말처리시설 방류수 기준 초과시에만 부과하고 있어 오염물질 총량 저감 유도에 한계
 • 미부과대상 오염물질 관리소홀, 처리기술 발전, 물가상승률 등이 반영되지 않아 실제 처리비용과 괴리
 • 과도한 누진계수 적용-부과로 징수율 저조

〈표 4-4-1〉폐수 배출부과금 체계

<table>
<thead>
<tr>
<th>구분</th>
<th>기본배출부과금</th>
<th>초과배출부과금</th>
</tr>
</thead>
</table>
| 부과기준 | • 배출허용기준 이하로 배출되나, 종말처리시설 방류수 수질기준 초과
 • 하폐수종말처리시설의 배출되는 폐수 중 오염물질이 방류수 수질기준 초과 | • 배출허용기준 초과
 • 폐수무방류배출시설에서 공공수역에 오염물질 방류 |
| 부과대상 오염물질 | • 유기물질(BOD, COD), 부유물질 | • 19종 |
| 부과기간 | • 매반기별로 부과(연2회) | • 배출허용기준 초과시부터 개선완료시까지 |
| 부과금 산정방법 | • 사업자가 제출한 자료를 기본으로 하여 조정 | • 행정기관의 점검결과
 • 자진 개선계획서 제출 |
나. 주요대책

- 자가측정 의무 도입
- 수질배출부과금 제도 개선

- 자가측정 의무 도입방안
 * 1~2종 사업장 중 「환경오염시설의 통합관리에 관한 법률」 대상 폐수배출시설 자가측정 의무화 예정(측정항목, 주기 미정)
 * 수질관리 강화가 필요한 폐수배출시설 우선적 도입
 - 공동방지시설로 폐수 유입 처리하는 폐수배출시설의 경우 개별 배출시설에 자가측정을 의무화하여 책임성 확보 필요
 - 공공 하·폐수처리시설로 폐수 유입 처리하는 배출시설은 1~2종은 우선 실시하고 3~5종은 배출량, 하·폐수처리시설의 효율 등을 검토하여 의무화 추진
 * 공동방지시설 등으로 유입 처리하는 시설, 통합법 대상시설의 자가측정 결과를 평가한 후 자가측정 의무화 전면적 도입 검토

- 수질배출부과금 제도 개선
 * 초과부과금 산정시 과중한 부과의 원인이 되는 누진적·중복적 부과 계수 일부 완화 또는 폐지
 - 사업장 종별 부과계수 폐지 및 연도별 산정지수 완화 등
 * 기본 및 초과부과금 부과항목 확대
 - (기본부과금) 2개 항목(유기물질, 부유물질) → 4개 항목(총인, 총질소 추가)
 - (초과부과금) 19개 항목 → 42개 항목

※ 배출부과금 부과항목: '83년 12종 → '95년 17종 → '03년 19종
변화된 여건을 반영하여 단위 중량당 부과금액 현실화
- 환경피해 및 처리 비용, 수생태계 위해성 정도 등을 고려한 오염물질별 객관적 요율(처리비용) 산정·적용
※ 현행 오염물질 1kg당 부과금액(83산정)은 그간의 폐수처리기술의 발전과 경제여건의 변화를 반영하지 못해 현실과 괴리

다. 향후 추진 계획

- 자가측정 의무도입(~’20)
- 수질배출부과금 제도 개선(~’20)

참고자료 4-4-1
수질TMS 설치·운영비 및 자가측정비 비교
(단위 : 천원/최초 1년)

<table>
<thead>
<tr>
<th>TMS</th>
<th>자가측정</th>
</tr>
</thead>
<tbody>
<tr>
<td>합계</td>
<td>설치비</td>
</tr>
<tr>
<td>270,000</td>
<td>250,000</td>
</tr>
</tbody>
</table>

※ 자가측정은 년 2회 기준으로 산출
4-5. 수질오염사고 대응능력 강화

가. 현황 및 문제점

- ’12년 대비 ’14년 수계별 수질오염사고 건수가 2.6배 증가하는 등 매년 수질오염사고 발생
 - ’10년∼’14년까지 발생한 수질오염 사고는 총 606건

<table>
<thead>
<tr>
<th>연도별</th>
<th>계</th>
<th>한강</th>
<th>낙동강</th>
<th>금강</th>
<th>영산강</th>
<th>만경강</th>
<th>기타</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>606</td>
<td>144</td>
<td>101</td>
<td>104</td>
<td>36</td>
<td>23</td>
<td>198</td>
</tr>
<tr>
<td>2014</td>
<td>212</td>
<td>55</td>
<td>24</td>
<td>25</td>
<td>6</td>
<td>9</td>
<td>93</td>
</tr>
<tr>
<td>2013</td>
<td>157</td>
<td>40</td>
<td>30</td>
<td>45</td>
<td>7</td>
<td>3</td>
<td>32</td>
</tr>
<tr>
<td>2012</td>
<td>83</td>
<td>12</td>
<td>15</td>
<td>14</td>
<td>9</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>2011</td>
<td>68</td>
<td>13</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>2010</td>
<td>86</td>
<td>24</td>
<td>16</td>
<td>12</td>
<td>6</td>
<td>2</td>
<td>26</td>
</tr>
</tbody>
</table>

- 유형별로는 유류유출(284건), 수환경변화(물고기폐사, 136건), 기타(131건), 화학물질(55건) 등 발생
- 사고원인별로는 관리부주의(260건), 기타(170건), 자연현상(128), 교통사고(48건) 등으로 나타남

- 수질오염 사고시 신속한 대응을 위해 수질자동측정망을 설치·운영하고 있으나 새로운 물질 출현에 따른 모니터링 미흡, 정확한 원인규명 불가 등 발생
- 수질자동측정망에 측정 불가능한 새로운 유해물질 출현
 - 의약품 등 진류성 유기유해물질 항목 및 현행 분석 가능한 중금속(Cu, Pb, Zn, Cd) 외 항목
수질자동측정망에 의한 수질오염경보제의 경우, 초기강우, 혼탁수 일시 유입, 기기이상 등으로 경보발생은 빈번하나 실제 경보발생 실적이 낮고 기기고장 및 수리기간 지역에 따른 가동중지 기간 등의 문제가 발생
- 국가수질자동측정망에 대한 신뢰도 및 활용도에 대한 부정적 인식 확대 원인

〈표 4-5-2〉 수질오염경보 발생 및 발령 건수

<table>
<thead>
<tr>
<th>구 분</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>경보발생(측정소)</td>
<td>254건</td>
<td>254건</td>
<td>287건</td>
<td>318건</td>
<td>268건</td>
</tr>
<tr>
<td>경보발령(지방청)</td>
<td>1건</td>
<td>0건</td>
<td>1건</td>
<td>3건</td>
<td>12건</td>
</tr>
</tbody>
</table>

수계별 취약지역에 대한 집중감시로 무인운영체제의 한계 극복과 새로운 유해물질 출현에 적극 대처할 수 있도록 연구기능 강화 필요
- 집중수질측정센터(집중측정소)를 설치하여 사고 취약지역에 대한 광역적 집중감시와 오염물질에 대한 정밀 모니터링 시행을 통한 정확한 수질오염 원인 규명
- 자동측정 및 수동측정(정밀분석)을 연계한 종합적인 감시 및 분석 시행

![위치도](그림 4-5-1) 왜관수질점측정소 위치 및 설계도
나. 주요대책

| ◆ 어류사고 CSI 구축 및 운영 |
| ◆ 수질집중측정센터의 확대 설치 |
| ◆ 완충저류시설 설치 및 확대 |
| ◆ 수질오염사고 감시모니터링 기능 제고 |

다. 어류사고 CSI 구축 및 운영

◆ 국립환경과학원 내 어류사고 CSI (Crime Scene Investigation)를 구축·운영하여 수질 오염사고 및 용존산소량 부족 등 어류폐사 원인분석
◆ 어류폐사 방지를 위한 사전·사후관리 방안과 재발방지대책을 마련하는 방안 마련

다. 수질집중측정센터(측정소)의 확대 설치

◆ 낙동강 2개소, 한강, 금강, 영산강 각각 1개소 확대 설치
◆ 수질오염사고 취약지역 정밀 감시
 - 수질오염사고 취약지역에 대한 주요 산업용 화학물질에 대한 정밀 모니터링 수행
◆ 측정정확도 향상 실험을 위한 테스트베드 운영
 - 생물감시장치의 현장운영, 신규 측정기기 도입시 사전 성능비교를 통한 평가, 현장 적응성 평가 등 최적 측정기기 선별
◆ 정밀분석장비 도입 및 미량화학물질 모니터링
 - 하천수 중의 미량화학물질 모니터링을 위한 장비 도입 및 모니터링 시행
◆ 측정분석 자동화 연구 및 전문가 양성
 - 수질감시 기능강화 및 신뢰도 향상을 위한 연구 수행 및 관련 전문가 양성
완충저류시설 설치 및 확대

전국의 완충저류시설 설치대상 산업단지 또는 공업지역의 사고발생가능성, 부지여건, 기술적인 조건, 경제성 등을 고려한 우선순위 선정 및 설치
(※ 참고자료4-5-1: 완충처리시설 설치대상)
- 부지여건, 폐수의 성상, 수질오염사고 발생 가능성을 조사하여 완충저류시설 설치장소 및 추진일정 협의
- 완충저류시설 설치운영계획 협의 및 순차적 설치(‘15∼‘25)

수질오염사고 감시 모니터링 기능 제고

현행 국가수질자동측정망의 사고감시 기능 향상

정밀분석장비 도입 및 운영 가이드라인 마련
다. 향후 추진 일정

- 어류사고 CSI 구성 및 운영(’20)
- 수질점증측정센터 설치 및 확대(’15～’21)
 - 정밀분석장비 도입 및 운영 가이드라인 마련(’17～’25)
 - 미량화학물질 모니터링시행, 측정분석 자동화 연구 및 전문가 양성(’17～’25)
- 완충저류시설 설치 및 확대(’25)
- 자동측정방의 수질오염사고 감시 모니터링 기능 제고(’20)

참고자료 4-5-1

<table>
<thead>
<tr>
<th>일련번호</th>
<th>사관</th>
<th>단지명</th>
<th>조성면적</th>
<th>특정수질폐수배출량</th>
<th>폐수배출량</th>
<th>유해화학물질취급량</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>면적(천㎡)</td>
<td>대성여부</td>
<td>배출량(m³/일)</td>
<td>대성여부</td>
</tr>
<tr>
<td>계</td>
<td></td>
<td>97개소</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>파주시</td>
<td>파주LCD일반산업단지</td>
<td>1,716 〇</td>
<td>79,844 〇</td>
<td>82,153 〇</td>
<td>158,803 〇</td>
</tr>
<tr>
<td>2</td>
<td>나주시</td>
<td>나주미래산업단지</td>
<td>1,785 〇</td>
<td>- 〇</td>
<td>4,000 〇</td>
<td>1,200 〇</td>
</tr>
<tr>
<td>3</td>
<td>충주시</td>
<td>충주바가폴리스산업단지</td>
<td>1,811 〇</td>
<td>- 〇</td>
<td>12,335 〇</td>
<td>- 〇</td>
</tr>
<tr>
<td>4</td>
<td>청주시</td>
<td>청주일반산업단지</td>
<td>4,099 〇</td>
<td>29,412 〇</td>
<td>52,038 〇</td>
<td>119,057 〇</td>
</tr>
<tr>
<td>5</td>
<td>울산시 북구</td>
<td>울산미포국가산업단지</td>
<td>48,111 〇</td>
<td>97,318 〇</td>
<td>238,053 〇</td>
<td>21,306,113 〇</td>
</tr>
<tr>
<td>6</td>
<td>울주군</td>
<td>울산기기산업단지</td>
<td>25,939 〇</td>
<td>30,105 〇</td>
<td>105,172 〇</td>
<td>6,518,581 〇</td>
</tr>
<tr>
<td>7</td>
<td>세종시</td>
<td>세종국가산업단지</td>
<td>50,253 〇</td>
<td>14,167 〇</td>
<td>93,202 〇</td>
<td>41,116,794 〇</td>
</tr>
<tr>
<td>8</td>
<td>완주군</td>
<td>완주일반산업단지</td>
<td>3,359 〇</td>
<td>1,939 〇</td>
<td>4,854 〇</td>
<td>268,199 〇</td>
</tr>
<tr>
<td>9</td>
<td>대전시 대덕구</td>
<td>대전제2일반산업단지</td>
<td>777 〇</td>
<td>1,200 〇</td>
<td>7,266 〇</td>
<td>51,903 〇</td>
</tr>
<tr>
<td>10</td>
<td>아산시</td>
<td>아산디스플레이시티1일반산업단지<구:황성점플렉스></td>
<td>2,451 〇</td>
<td>103 〇</td>
<td>121,258 〇</td>
<td>159,015 〇</td>
</tr>
<tr>
<td>일련번호</td>
<td>시군</td>
<td>단지명</td>
<td>조성면적</td>
<td>특정수질폐수배출량</td>
<td>폐수배출량</td>
<td>유해화학물질취급량</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>------------------------------</td>
<td>----------</td>
<td>------------------</td>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>면적(㎡)</td>
<td>대상배출량(㎥/일)</td>
<td>대상배출량(㎥/일)</td>
<td>대상취급량(톤/년)</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>대덕구 대전제1일반산업단지</td>
<td>479</td>
<td>1,200</td>
<td>7,266</td>
<td>144,098</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>서산시 대죽일반산업단지</td>
<td>2,101</td>
<td>○ 13,474</td>
<td>○ 14,919</td>
<td>○ 29,890</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>세종시 부강일반산업단지(구:부용)</td>
<td>565</td>
<td>329</td>
<td>8,900</td>
<td>25,146</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>청원군 오창과학일반산업단지</td>
<td>9,450</td>
<td>○ 10,663</td>
<td>○ 18,658</td>
<td>○ 59,212</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>익산시 익산제2일반산업단지</td>
<td>3,309</td>
<td>○ 4,633</td>
<td>○ 10,318</td>
<td>○ 27,670</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>천안시 천안일반산업단지</td>
<td>1,336</td>
<td>30</td>
<td>2,756</td>
<td>290,767</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>순천시 순천일반산업단지</td>
<td>651</td>
<td>50</td>
<td>471</td>
<td>26,975</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>순천시 순천일반산업단지</td>
<td>583</td>
<td>50</td>
<td>660</td>
<td>10,800</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>여수시 율촌제1일반산업단지 (광양만권경제자유구역)</td>
<td>9,172</td>
<td>○ 5,559</td>
<td>○ 66,361</td>
<td>○ 9,702</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>양주시 검산일반산업단지</td>
<td>145</td>
<td>75</td>
<td>11,255</td>
<td>1,700</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>청원시 정음제3일반산업단지</td>
<td>36,756</td>
<td>○ 13,851</td>
<td>○ 22,728</td>
<td>○ 62,978</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>청주시 진주일반산업단지</td>
<td>1,025</td>
<td>820</td>
<td>○ 1,242</td>
<td>○ 6,475</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>남동구 남동국가산업단지</td>
<td>9,574</td>
<td>○ 3,808</td>
<td>○ 8,720</td>
<td>○ 29,943</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>군산시 군산일반산업단지</td>
<td>5,641</td>
<td>○</td>
<td>○ 15,678</td>
<td>○ 1,675,390</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>원주시 우산일반산업단지</td>
<td>355</td>
<td>20</td>
<td>1,068</td>
<td>4,710</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>광주시 광산구 하남일반산업단지(1-3차)</td>
<td>5,944</td>
<td>○ 1,176</td>
<td>○ 3,913</td>
<td>11,711</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>군산시 군산일반산업단지</td>
<td>13,702</td>
<td>○ 451</td>
<td>○ 17,219</td>
<td>○ 37,038</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>대전시 대덕연구개발특구</td>
<td>70,417</td>
<td>○ 1,864</td>
<td>○ 25,445</td>
<td>○ 15,090</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>천안시 천안제2일반산업단지</td>
<td>823</td>
<td>1,250</td>
<td>○ 3,222</td>
<td>○ 1,295</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>광양시 광양일반산업단지</td>
<td>96,405</td>
<td>○ 14</td>
<td>○ 96,428</td>
<td>○ 308,262</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>아산시 인주일반산업단지(1공구)</td>
<td>1,695</td>
<td>○</td>
<td>○ 38,932</td>
<td>24.4</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>평택시 현곡일반산업단지</td>
<td>723</td>
<td>10</td>
<td>1,529</td>
<td>4,474</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>평택시 평택일반산업단지</td>
<td>535</td>
<td>77</td>
<td>339</td>
<td>5,295</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>시흥시 반월특수지역(시화지구)</td>
<td>18,850</td>
<td>○ 17,036</td>
<td>○ 63,942</td>
<td>○ 598,442</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>안산시 반월특수지역(안산신도시)</td>
<td>14,640</td>
<td>○ 30,993</td>
<td>○ 137,703</td>
<td>○ 321,147</td>
</tr>
<tr>
<td>일련번호</td>
<td>시군</td>
<td>단지명</td>
<td>조성면적 (천㎡)</td>
<td>대상여부</td>
<td>특정수질폐수배출량 (㎥/일)</td>
<td>대상여부</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>----------</td>
<td>--------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>36</td>
<td>천안시</td>
<td>천안제3일반산업단지</td>
<td>2,335</td>
<td>○</td>
<td>6,675</td>
<td>○</td>
</tr>
<tr>
<td>37</td>
<td>포항시</td>
<td>포항국가산업단지</td>
<td>37,868</td>
<td>○</td>
<td>61,316</td>
<td>○</td>
</tr>
<tr>
<td>38</td>
<td>원주시</td>
<td>문막일반산업단지</td>
<td>410</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>음성군</td>
<td>음성하이텍일반산업단지</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>충주시</td>
<td>충원일반산업단지</td>
<td>375</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>전주시</td>
<td>전주친환경첨단복합산업단지(분)</td>
<td>291</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>경주시</td>
<td>경천제1일반산업단지</td>
<td>147</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>군산시</td>
<td>군산2국가산업단지(구·군장)</td>
<td>50,459</td>
<td>○</td>
<td>332</td>
<td>○</td>
</tr>
<tr>
<td>44</td>
<td>동두천</td>
<td>동두천일반산업단지</td>
<td>262</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>포항시</td>
<td>포항블루밸리</td>
<td>6,203</td>
<td>○</td>
<td>1,187</td>
<td>○</td>
</tr>
<tr>
<td>46</td>
<td>당진시</td>
<td>아산국가산업단지(고대지구)</td>
<td>3,024</td>
<td>○</td>
<td>1,187</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>기장군</td>
<td>정관일반산업단지</td>
<td>1,209</td>
<td></td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>충주시</td>
<td>충주제1일반산업단지</td>
<td>1,286</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>광주시</td>
<td>광주지구</td>
<td>937</td>
<td></td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>사하구</td>
<td>신평·정림일반산업단지</td>
<td>2,815</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>음성군</td>
<td>대봉일반산업단지</td>
<td>435</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>광주시</td>
<td>광주지구</td>
<td>9,992</td>
<td>○</td>
<td>2,499</td>
<td>○</td>
</tr>
<tr>
<td>53</td>
<td>포항시</td>
<td>포항4일반산업단지</td>
<td>2,047</td>
<td>○</td>
<td>1,961</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>짚평군</td>
<td>짚평일반산업단지</td>
<td>682</td>
<td></td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>화성시</td>
<td>마도일반산업단지</td>
<td>943</td>
<td></td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>평택시</td>
<td>아산국가산업단지(포송지구)</td>
<td>8,078</td>
<td>○</td>
<td>916</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>전주시</td>
<td>전주제2일반산업단지</td>
<td>687</td>
<td>○</td>
<td>7,033</td>
<td>○</td>
</tr>
<tr>
<td>58</td>
<td>화성시</td>
<td>화성일반산업단지</td>
<td>963</td>
<td>○</td>
<td>870</td>
<td></td>
</tr>
<tr>
<td>일련번호</td>
<td>시군</td>
<td>단지명</td>
<td>조성 면적</td>
<td>특정수질폐수배출량</td>
<td>폐수배출량</td>
<td>유해화학물질취급량</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>----------</td>
<td>--------------------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>면적(천㎡)</td>
<td>대상 실태</td>
<td>배출량(㎥/일)</td>
<td>대상 실태</td>
</tr>
<tr>
<td>59</td>
<td>세종시</td>
<td>전의일반산업단지</td>
<td>481</td>
<td>715</td>
<td>5,388</td>
<td>11.2</td>
</tr>
<tr>
<td>60</td>
<td>성남시</td>
<td>성남일반산업단지</td>
<td>1,823</td>
<td>○ 556</td>
<td>2,407</td>
<td>0.0</td>
</tr>
<tr>
<td>61</td>
<td>정읍시</td>
<td>정읍제1일반산업단지</td>
<td>202</td>
<td>5,000</td>
<td>5,583</td>
<td>0.0</td>
</tr>
<tr>
<td>62</td>
<td>화성시</td>
<td>발안일반산업단지</td>
<td>1,839</td>
<td>○ 278</td>
<td>5,651</td>
<td>0.0</td>
</tr>
<tr>
<td>63</td>
<td>양산시</td>
<td>유산일반산업단지</td>
<td>98</td>
<td></td>
<td>1,305</td>
<td>13.3</td>
</tr>
<tr>
<td>64</td>
<td>광산구</td>
<td>평동일반산업단지</td>
<td>4,964</td>
<td>○ 3</td>
<td>460</td>
<td>4,700</td>
</tr>
<tr>
<td>65</td>
<td>충주시</td>
<td>충주첨단일반산업단지</td>
<td>1,992</td>
<td>○ 0</td>
<td>1</td>
<td>10,224</td>
</tr>
<tr>
<td>66</td>
<td>부산시강서구</td>
<td>신호일반산업단지 (부산진해경제자유구역)</td>
<td>3,121</td>
<td>○ 931</td>
<td>931</td>
<td>0.0</td>
</tr>
<tr>
<td>67</td>
<td>파주시</td>
<td>문발2일반산업단지</td>
<td>206</td>
<td>1,001</td>
<td>1,210</td>
<td>0.0</td>
</tr>
<tr>
<td>68</td>
<td>인천시남구</td>
<td>인천기계산업단지</td>
<td>350</td>
<td>3,984</td>
<td>4,204</td>
<td>0.0</td>
</tr>
<tr>
<td>69</td>
<td>안성시</td>
<td>마안제2일반산업단지</td>
<td>160</td>
<td>3,180</td>
<td>3,540</td>
<td>0.0</td>
</tr>
<tr>
<td>70</td>
<td>화성시</td>
<td>황남제약일반산업단지</td>
<td>648</td>
<td>2,004</td>
<td>6,243</td>
<td>9.6</td>
</tr>
<tr>
<td>71</td>
<td>아산시</td>
<td>아산테크노밸리</td>
<td>2,984</td>
<td></td>
<td>11,569</td>
<td>4,050</td>
</tr>
<tr>
<td>72</td>
<td>창원시</td>
<td>진해국가산업단지</td>
<td>3,306</td>
<td>○ 10</td>
<td>11,569</td>
<td>0.0</td>
</tr>
<tr>
<td>73</td>
<td>인천시남구</td>
<td>인천일반산업단지</td>
<td>1,136</td>
<td>416</td>
<td>1,314</td>
<td>0.0</td>
</tr>
<tr>
<td>74</td>
<td>사천시</td>
<td>사천제1일반산업단지</td>
<td>2,059</td>
<td>○ 246</td>
<td>894</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>인천시연수구</td>
<td>송도지식정보산업단지 (인천경제자유구역)</td>
<td>2,402</td>
<td>○ 260</td>
<td>669</td>
<td>0.0</td>
</tr>
<tr>
<td>76</td>
<td>영암군</td>
<td>대불국가산업단지</td>
<td>20,886</td>
<td>○ 0</td>
<td>8,252</td>
<td>83,260</td>
</tr>
<tr>
<td>77</td>
<td>인천시부평구</td>
<td>한국수출국가산업단지 (부평지구)</td>
<td>610</td>
<td>407</td>
<td>3,168</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>인천시서구</td>
<td>한국수출국가산업단지 (주안지구)</td>
<td>1,136</td>
<td>392</td>
<td>642</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>완주군</td>
<td>전주과학산업연구단지</td>
<td>3,074</td>
<td>○ 135</td>
<td>359</td>
<td>0.0</td>
</tr>
<tr>
<td>80</td>
<td>안산시</td>
<td>반월도금일반산업단지</td>
<td>137</td>
<td>○ 419</td>
<td>3,088</td>
<td>0.0</td>
</tr>
<tr>
<td>81</td>
<td>청원군</td>
<td>현도일반산업단지</td>
<td>719</td>
<td>○ 0</td>
<td>5,150</td>
<td>3,304</td>
</tr>
<tr>
<td>일련번호</td>
<td>시군</td>
<td>단지명</td>
<td>조성면적 (천㎡)</td>
<td>대상여부</td>
<td>특수수질폐수배출량 (㎥/일)</td>
<td>대상여부</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>--------</td>
<td>----------------</td>
<td>--------</td>
<td>---------------------</td>
<td>--------</td>
</tr>
<tr>
<td>82</td>
<td>평택시</td>
<td>송탄일반산업단지</td>
<td>1.086</td>
<td>1</td>
<td>1.730</td>
<td>4,942</td>
</tr>
<tr>
<td>83</td>
<td>구로구</td>
<td>한국수출국가산업단지 (서울디지털)</td>
<td>1.922</td>
<td>○</td>
<td>5</td>
<td>426</td>
</tr>
<tr>
<td>84</td>
<td>인천시</td>
<td>청라1지구일반산업단지 (인천경제자유구역)</td>
<td>194</td>
<td>350</td>
<td>○</td>
<td>0.0</td>
</tr>
<tr>
<td>85</td>
<td>파주시</td>
<td>파주출판문화정보국가산업단지</td>
<td>1.561</td>
<td>○</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>86</td>
<td>청원군</td>
<td>오송생명과학단지</td>
<td>4,628</td>
<td>○</td>
<td>38</td>
<td>299</td>
</tr>
<tr>
<td>87</td>
<td>사천시</td>
<td>사천제2일반산업단지</td>
<td>1.616</td>
<td>○</td>
<td>35</td>
<td>37</td>
</tr>
<tr>
<td>88</td>
<td>평택시</td>
<td>칠괴일반산업단지</td>
<td>641</td>
<td></td>
<td>1.705</td>
<td>1,354</td>
</tr>
<tr>
<td>89</td>
<td>세종시</td>
<td>전북2일반산업단지</td>
<td>867</td>
<td>0</td>
<td>715</td>
<td>1,546</td>
</tr>
<tr>
<td>90</td>
<td>아산시</td>
<td>인주일반산업단지(2공구)</td>
<td>1.812</td>
<td>○</td>
<td></td>
<td>911</td>
</tr>
<tr>
<td>91</td>
<td>전주시</td>
<td>전주제1일반산업단지</td>
<td>1.683</td>
<td>○</td>
<td>0</td>
<td>35,776</td>
</tr>
<tr>
<td>92</td>
<td>인천시</td>
<td>계양구 효성동 321-36</td>
<td>1.984</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>군포시</td>
<td>군포시 담정동 277-4</td>
<td>1,596</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>대덕구</td>
<td>대덕구명촌동 507</td>
<td>2,524</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>당진시</td>
<td>당진시 석문면 교로리 981-9</td>
<td>2,295</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>양산시</td>
<td>양산시 소주동 3-7</td>
<td>1,849</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>부산시</td>
<td>사상구 학정동 723-39</td>
<td>2,799</td>
<td>○</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

유럽의 경우, 수질오염사고 대응을 위한 정밀감시, 오염발생원 추적, 원인 분석과 신규오염물질에 대한 영향 등을 파악하기 위하여 분석전문가들이 상주하는 측정소를 운영하여, 스위스, 독일, 네덜란드 등 일반항목, 생물감시 및 주요 유기화합물(VOCs)는 실시간 연속측정하고, 600여 종의 미량수질모질의 정밀분석은 수분석을 통해 실시한다.
- 최근 온라인 LC/HRMS의 설치를 통해 오염물질 정밀 감시 및 원인분석
 - LC/HRMS : 액체 크로마토그래피 고분해능 질량분석기
- 또한 연속자동채수시스템(순차 채수 및 배수)을 통해 7일 이상의 과거 샘플을 상시 보존함으로써, 경보 발령시 이전 시료를 분석하여 오염물질 유입 시점 및 발생원 정밀 추적조사 수행

국외 수질자동측정소 - 운영 현황

<table>
<thead>
<tr>
<th>수계</th>
<th>측정소</th>
<th>운영 현황</th>
<th>주요 장비</th>
</tr>
</thead>
</table>
| 스위스 | Basel (라인강) | - 1986년 산도스 화재로 인한 라인강 살충제 유출사건 이후 스위스 최대 공업 도시인 바젤의 화학물질공단, 환경기초시설 감시를 위해 1993년 설치
- 스위스 연방정부와 독일지방정부가 공동 운영
- 일반항목 : 연속 측정
- VOCs, 미량유기오염물질, 중금속은 1일 1회 분석
- 약 600종의 미량유기물질과 미지물질을 LC/HRMS로 매일 분석 ※ 150종 ppt 농도수준의 정량 분석
- 자동채수배수시스템으로 24시간~1주까지 시료를 보관
- 20명 상주(5명 미량물질 분석) | - LC/HRMS
- GC/MS
| 독일 | Worms (라인강) | - 스위스 산도스 화재로 인한 수질오염사고 이후 수질오염감시 목적으로 1995년 설치
- 상류 8km에 유럽 최대 화학공장인 BASF사의 배수구가 있고 인근 50만명의 만하임시가 위치
- 일반항목, 생물감시 : 연속 측정
- 탁도, 방향족탄소화합물 : 30분 주기 측정(4개 취수라인)
- GC/MS 이용하여 상류 공장에서 사용하는 화학물질과 제조제, 살충제, 농약 류를 정밀 수분석
- 생물감시 : 실시간 연속 측정
- 유기오염물질(VOCs, 극성·비극성 유기물질), 이온성 물질, 중금속 : 4시간 주기 측정
- 경보발령시 자동 채수배수시스템으로 24시간~1주까지 채수하여 16개의 시료가 순차적으로 자동 채수·배수되며, 경보경보발령시 경보발령 시 자동 채수
- 5~6명 상주 | - GC/MS
- UV흡광광도계
- 생물감시(물벼룩, 조류, 조개) |
| 네덜란드 | Eijsden (뮤즈강) | - 벨기에 산업단지로부터 유입되는 뮤즈강의 수질감시를 위해 네덜란드와 벨기에 국경에 1993년에 설치
- 채수부자 분석 및 결과까지 완전자동시스템 구축
- 일반항목, 탁도, 물벼룩 : 실시간 연속 측정
- 유기오염물질(VOCs, 극성·비극성 유기물질), 이온성 물질, 중금속 : 4시간 주기 측정
- 경보발령시 자동 채수배수시스템으로 24시간~1주까지 채수하여 16개의 시료가 순차적으로 자동 채수·배수되며, 경보경보발령시 경보발령 시 자동 채수
- 10명 상주(시험분석, 시스템 개발, 측정소 운영) | - 온라인 SPE HPLC-GC/MS
- Purge and Trap GC/MS
- 온라인 중금속측정기
- 생물감시(물벼룩, 조류) |
제 2차 물환경관리 기본계획 부록

제 2부
5대 행정지구별 주요 과제

<table>
<thead>
<tr>
<th>Online-Parameter</th>
<th>Organische Spurenanalys</th>
<th>Target Screening</th>
<th>Non-target Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp, pH, O₂, Leitfähigkeit</td>
<td>GC / GC-MS, HPLC-HRMS</td>
<td>MS/MS analysis with reference standard</td>
<td>Molecular formula fit</td>
</tr>
<tr>
<td>DOC, TOC, N, P, USB, UH</td>
<td>Spurenstoffe (65)</td>
<td>Conformation with MS/MS spectrum and retention time</td>
<td>Structure generation & ranking with MS/MS databases & fragmentation prediction tools</td>
</tr>
<tr>
<td>Anorganik + Andere (C, Ca, K, Na, Mg)</td>
<td>Unbekannten Screening (+)</td>
<td>Exact mass extraction</td>
<td>Supplementary data analysis (e.g., retention time + ionization plausibility)</td>
</tr>
<tr>
<td>Ammoniak, Nitrit, Nitrat (N=7)</td>
<td>Wasserelektrolyi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Komplexblähern (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andere</td>
<td>Wasserelektrolyi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Known

- standard available?
- Yes No

Unknown

- predictable?
- Yes No

Water quality monitoring Station at Basel

〈스위스 바젤 라인강 수질측정소〉
가. 현황 및 문제점

□ 최근 3년간 녹조현상 발생 특성

- 최근 이상고온, 강수량 부족, 체류시간 증가 등 녹조발생에 유리한 조건이 형성되면서 조류경보 발령일수가 증가하고, 발령지역이 확대되는 추세

 최근 3년간 조류경보제 발령일수 및 발령지점수 현황

- 2015년 6월, 한강하류 구간(잠실∼행주대교)에서 조류경보제 운영 이후 처음으로 조류 “경보” 단계 발령(6.30)

 - ’15년 극심한 가뭄으로 인한 팔당댐 방류량의 감소(전년대비 38%) 및 한강하류구간(잠실∼신곡수중보)의 유량 감소(전년대비 46%) 등이 원인으로 추정
표 4-6-1 한강수계 연도별 조류발생 변화

<table>
<thead>
<tr>
<th>구분</th>
<th>팔당호</th>
<th>광교지</th>
<th>한강</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>'13</td>
<td>'14</td>
<td>'15</td>
</tr>
<tr>
<td>최초</td>
<td>주의보</td>
<td>8.5</td>
<td>8.19</td>
</tr>
<tr>
<td>발령일</td>
<td>경보</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>최초</td>
<td>유해 남조류</td>
<td>5.8</td>
<td>5.19</td>
</tr>
<tr>
<td></td>
<td>출현일</td>
<td></td>
<td></td>
</tr>
<tr>
<td>발령일수</td>
<td>주의보</td>
<td>0 23 43</td>
<td>0 0 28</td>
</tr>
<tr>
<td></td>
<td>경보</td>
<td>0 0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>총합</td>
<td>0 23 43</td>
<td>0 0 28</td>
<td>0 24</td>
</tr>
</tbody>
</table>

- 낙동강 시범운영구간의 유해남조류 변화는 출현시기 및 출현중에 대한
 뚜렷한 경향성을 나타내지 않았으나, 특이사항으로 ’15년 겨울에도 자온성
 유해남조류(아파니조메논)가 출현하여 ‘겨울녹조’ 현상 발생

 * 칠곡, 강정고령, 청령함안 3개 지점에 대해 시범운영(13~15)
 * (15년) 청령함안보 11.24~12.14(21일), 강정고령보 12.8~12.21(14일) "출현일임(주의보)"

- 녹조현상의 문제점

- 먹는 물 측면
 - 녹조중 일부 남조류에서 발생하는 독소* 및 납새물질**로 인해 먹는물
 불안 및 기피 현상 등 발생 우려

 * 유해남조류 중 일부 종에서 간독소(마이크로시스탄), 신경독소(아나톡신)등
 ** 물에서 흙냄새와 곰팡이냄새를 일으키는 2-MIB, 지오스민 등

- 독소 및 납새물질은 정수처리과정에서 충분히 처리가 가능하다, 국민
 불안 및 정수처리 비용 증가 등 문제점 존재

- 수생태 측면
 - 대량 발생시 조류가 햇빛을 차단하여 수생식물의 광합성 방해 및 산소
 부족 발생 우려
친수활동 측면
- 물 색깔, 수면 짜);}기, 악취 등으로 불쾌감을 줄 수 있어 수영•낚시 등
친수활동에 불편 발생 가능

녹조현상 발생원인
- 녹조는 영양물질의 과다, 높은 수온과 일사량의 증가, 체류시간 증가 등
복합적 요인에 의해 발생
- 적은 강우량에 따른 유량 감소(체류시간 증가), 기온 상승에 따른 수온
상승 시기에 녹조가 급격히 증가하는 패턴을 보임

최근 기후변화와 4대강 사업 등 수환경변화로 인한 체류시간 증가로 녹조
발생 여건 확대
- 녹조는 체류시간 외에도 영양물질, 일사량, 수온 등 다양한 환경 요인이
복합적으로 작용하여 발생하므로 지속적인 조사•연구 및 4대강사업에
대한 중•장기적인 종합분석이 필요

국민 인식
- 보 주변의 녹조발생확대로 국민 위험인식 고조
- 국민들은 타 위험과 비교시 녹조의 위험이 후손에 미치는 영향과 정부
책임이 높은 위험으로 판단
- 국민들은 녹조의 위험 중 먹는 물의 안전성, 하천 생태계 및 자연환경
훼손, 불쾌한 넘새 순으로 우려하는 것으로 응답
나. 주요대책

- 녹조발생 사전예방 및 사후관리
- 녹조 모니터링 및 조류제거 명령 범위 확대
- 대국민 소통 확대

녹조발생 사전예방 및 사후관리

- 농·축산 비점 저감 방안 추진(제2차 비점오염원관리 종합대책)
 - 고당지 경작지 흙탕물 저감사업 실시
 - 농촌지역 맞춤형 비점오염저감시설 설치사업 추진
 - 가축분뇨 사전예방대책 강화, 발생부터 처분까지 전과정 관리
 - 가축분뇨 동 유기성폐기물 종합자원화단지 조성
 - 녹비작물 재배 종자대 지원, 토양유실 저감형 발기반 정비
 - 친환경농업단지 조성 등 친환경농업기반 구축

- 댐·보·저수지 연계운영 방안 마련(환경·국토·농림부 협업)
 - 평시에 댐·보·저수지에서 확보한 유량(환경대응용수)을 녹조 발생 시기에 일정기간 연계 방류하여 조류발생을 억제
 - 댐·보·저수지에 확보된 수량을 통하여 이수와 수질문제를 동시에 만족시킬 수 있는 최적의 조합 도출

녹조 모니터링 및 조류제거 명령 범위 확대

- 조류 원격모니터링 추진
 - 항공기, 드론에 초분광센서*를 탑재하여 4대강 수계 남조류 함유색소 농도를 모니터링
 * 물체가 반사하는 빛을 정밀 분석감지하여 남조류 특유의 피코시아닌 색소 구별 탐지가 가능한 장비 기술
 - 시기별 수계 단위 녹조발생 현황과 이동·확산 분석으로 녹조에 대한 메커니즘 연구와 예측 모델링에 활용
화경부장관의 조류피해 예방을 위한 조류제거 명령 대상 확대

녹조발생 원인규명 및 연구 강화
- 국내 서식 유해남조류의 유전자정보, 발생원인, 독성 등 특성을 파악을 위한 연구기반으로서 조류균주(종) 확보·배양·보관체계를 갖춘 조류은행 구축
- 국내 서식 유해남조류의 생물학적 특성(독성, 발생원인 등) 규명을 위한 기초연구 강화
- 녹조 제거기술 및 정수처리 기술 등 녹조 R&D 및 실증 강화
- 수계별(맞춤형) 특성 및 원인 분석 강화
 - 4대강 수계별 녹조현상 발생특성 및 발생원인을 맞춤형으로 분석하여 수계별 특성을 고려한 녹조 대책 마련에 반영

대국민 소통 확대
- 녹조 발생현황의 적극적이고 투명한 공개로 국민불안을 감소시키기 위해 녹조현상 정보 실시간 공개 및 쌍방향 의사소통
- 녹조현상 국민 가이드라인 작성 및 배포
- 국민 혼동이 우려되는 기존 조류경보제와 수질예보제의 2중 발령체계를 조류관리제도로 통합 추진
- 국민들의 친수활동 확대추세를 반영하여 상수원 중심의 친수경보제 시행·확대
다. 향후 추진 일정

◼ 녹조 발생 사전예방 및 사후관리
 ○ 농촌 비점오염 저감방안 추진
 - 비점오염저감을 위해서 42개 사업(계속30, 신규12, 54,684백만원) 국고
 보조사업 지속 추진(‘17년~)
 - 이천시 성천천 유역에 농업 비점오염원 통합·집중 시범사업을 추진하여
 농업 비점오염 저감사업 모범사례 마련(‘17~‘19)
 * 최적관리기법을 적용한 농업비점 저감효과 분석(‘17~‘19)
 - 비점오염 관리지역(세안군유역 우선관리지역)을 대상으로 농업비점오염
 저감을 위한 거버넌스 구축방안 수립(농림부, 전북도 협업)(‘17~)
 ○ 고랭지밭 비점오염 저감방안 추진
 - 불법경작 단속 등 비점오염원 관리를 위한 GIS 구축(‘16~)
 * 홍천 자운지구(‘16), 소양호 상류(양구 만대, 인제 기아지구)(‘17년), 평창 도암호 및 골지천 유역(‘18년)
 - 구축한 GIS를 기반으로 관계기관(자산관리공사, 산림청, 지자체)과 협동
 으로 불법경작지 단속 실시(‘17~)
 ○ 댐·보 저수지 연계운영 방안 마련
 - (관련규정 개정) 보 관리규정, 댐·보 연계운영 규정(이상 국토부), 저수지
 운영기준(농식품부), 수질예보 및 대응조치 규정(환경부) 등 개정(‘17.4월)
 - (연계방류 실시) 수계별 댐·보·저수지 연계방류 실시(‘17.6월~)

◼ 녹조 모니터링 및 조류제거 명령 범위 확대
 ○ 녹조 모니터링 기법 개발 중(‘15~‘17년, 1차)
 ○ 조류제거 명령 대상 확대(호소→하천·호소, ’17~)
녹조 발생 원인 규명 및 연구 강화

- 조류은행 구축 (’17∼) 및 기초연구 확대 추진 (’19∼)
- 녹조 R&D 확대 및 녹조 R&D 실증화 단지 구축 추진 (’19∼)
- 녹조 발생원인 및 제어인자 규명을 위한 현장실증실험 (메조코즘) 수행 (낙동강, 영산강, ’16∼’17) 및 확대 추진

대국민 소통 확대

- “조류정보방” 공개 및 사용편의 개선 (물환경정보시스템, ’16∼)
 - 국민 위험 인식 기반 정책을 위해 대국민 녹조인식 정기 조사 시행 (’18∼)
- 국민안전 보장, 불필요한 불안 감소를 위해 녹조현상의 원인, 대처방법 및 안전수칙 등이 수록된 국민 가이드라인 제작 및 배포 (’17∼)
- 조류관리제도 통합방안 마련 (’18)
- 친수활동 구간 (친수경보제)을 신설확대 (’16 시행, 지속 확대)
참고자료 4-6-1

 최근 3년간 수계별 조류경보 발령현황(’13 ~ ’15)

1. 한강

| 구분 | 필당호 | 광교지 | 한강
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>’13</td>
<td>’14</td>
<td>’15</td>
</tr>
<tr>
<td>최초발령일 주의보</td>
<td>-</td>
<td>8.5</td>
<td>8.19</td>
</tr>
<tr>
<td>경보</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>최초 유해남조류 출현일</td>
<td>5.8</td>
<td>5.19</td>
<td>6.15</td>
</tr>
<tr>
<td>발령일수 주의보</td>
<td>0</td>
<td>23</td>
<td>43</td>
</tr>
<tr>
<td>경보</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>총합</td>
<td>0</td>
<td>23</td>
<td>43</td>
</tr>
</tbody>
</table>

2. 낙동강

<table>
<thead>
<tr>
<th>구분</th>
<th>낙동강(철골보)</th>
<th>낙동강(강정고령보)</th>
<th>낙동강(창녕함안보)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>’13</td>
<td>’14</td>
<td>’15</td>
</tr>
<tr>
<td>최초발령일 출현알림(주의보)</td>
<td>8.28</td>
<td>7.29</td>
<td>9.22</td>
</tr>
<tr>
<td>경보</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>최초 유해남조류 출현일</td>
<td>7.1</td>
<td>6.16</td>
<td>3.23</td>
</tr>
<tr>
<td>발령일수 출현알림(주의보)</td>
<td>13</td>
<td>28</td>
<td>35</td>
</tr>
<tr>
<td>경보</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>총합</td>
<td>13</td>
<td>28</td>
<td>35</td>
</tr>
</tbody>
</table>

* 낙동강 칠골보, 강정고령보, 창녕함안보 : ’13~’15년 시범운영, ’16년부터 조류경보제 지점으로 운영

3. 금강

<table>
<thead>
<tr>
<th>구분</th>
<th>대청호</th>
<th>보령호</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>’13</td>
<td>’14</td>
</tr>
<tr>
<td>최초발령일 주의보</td>
<td>7.25</td>
<td>7.29</td>
</tr>
<tr>
<td>경보</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>최초 유해남조류 출현일</td>
<td>2.5</td>
<td>1.21</td>
</tr>
<tr>
<td>발령일수 주의보</td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>경보</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>총합</td>
<td>47</td>
<td>0</td>
</tr>
</tbody>
</table>

4. 영산강 : 최근 3년간 미발령
4-7. 기후변화 대응을 위한 환경기초시설물 최적관리

가. 현황 및 문제점

○ 최근 태풍, 홍수, 가뭄, 대설 등 자연재해 발생빈도가 증가하고 기후변화로 인한 강수의 패턴 및 경향이 큰 폭으로 변화
 - 현재 연간 호우일수 2.0일에서 21세기 후반기는 2.8일 정도로 30%이상 증가할 것으로 전망(196)
 - ’00년 이후 집중강우 비도가 증가하는 경향을 나타냄

 〈표 4-7-1〉 1950~2008년도까지의 집중강우 빈도

<table>
<thead>
<tr>
<th>구분</th>
<th>’50~’60</th>
<th>’60~’70</th>
<th>’70~’80</th>
<th>’80~’90</th>
<th>’90~’00</th>
<th>’00~’08</th>
</tr>
</thead>
<tbody>
<tr>
<td>1시간 최대 50mm 이상 발생횟수</td>
<td>8</td>
<td>11</td>
<td>32</td>
<td>66</td>
<td>86</td>
<td>111</td>
</tr>
<tr>
<td>일최대 300mm 이상 발생횟수</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>14</td>
<td>20</td>
<td>18</td>
</tr>
</tbody>
</table>

자료: 한국환경공단, 보도자료(2012.4.16.)

- 최근 10년간(’05~’14) 자연재해로 연평균 인명피해 27명, 재산피해 6,944억원 발생(197)

<자연재해로 인한 사망-실종자수>

참고: 재산피해액은 2014년도 환산 가격기준
자료: 국민안전처, 2014, 재해연보 재구성

<자연재해로 인한 피해액>

〈그림 4-7-1〉 최근 10년간(’05~’14) 자연재해로 인한 피해현황

196) 기상청, 2012, 한반도 기후변화 전망보고서
197) 국민안전처, 2014, 재해연보
집중호우 및 홍수로 인한 환경기초시설의 침수 및 탁수 유입 등으로 정상적 가동이 불가능함으로써 수질악화 및 정상적인 서비스 제공 정지 사례가 빈번하게 발생

해양구역 말단 및 공공수역 인접의 낮은 지대에 설치되는 특성에 따라 유역의 환경변화에 민감할 뿐만 아니라 청정시를 기준으로 건설되어 기후변화에 따른 침수 및 홍수 환경에 매우 취약

표 4-7-2 최근 주요 태풍 및 집중호우에 따른 환경기초시설 피해 사항

<table>
<thead>
<tr>
<th>자연 재해</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002년 태풍 루사</td>
<td>집중호우로 원주시 취수장에 토사가 유입되어 제한급수 실시 - 오봉저수지 붕괴위험으로 인한 홍제정수장으로 원수 유입 정량 중단에 따른 급수 중단 - 연극상수도와 옥계상수도 정전으로 급수 중단</td>
</tr>
<tr>
<td>2003년 태풍 매미</td>
<td>대구배수펌프장 작동 정지로 대명천과 달서천 범람 - 아현배수펌프장 작동 정지로 서대문구 공단 지역 50여개 공장 침수</td>
</tr>
<tr>
<td>2006년 태풍 에위니아</td>
<td>집중호우로 인한 산사태로 인제지역 5곳의 취수장 및 정수장 파손 - 4,000여 가구에 대한 급수 정비용 중단</td>
</tr>
<tr>
<td>2007년 태풍 나리</td>
<td>태풍 급습으로 인한 정전 및 침수로 제주정수장 가동 중단 - 제주도 전역 단수조치</td>
</tr>
<tr>
<td>2011년 집중호우</td>
<td>집중호우로 경기도 광주, 곤지암 하수처리장 침수 및 가동 정지 - 오토 하수처리장 고도처리 저하 약물설 및 첨사지 일부 침수 - 미처리된 생활하수 3만 8천여 톤 폐장수원으로 유입</td>
</tr>
</tbody>
</table>

자료 : 명수정 외, 2011, 자연재해 발생시 환경부문의 대응체계 개선방안 연구, KEI

제주정수장(‘07) 광주하수처리장(‘11)

그림 4-7-2 홍수에 의한 환경기초시설 침수 사례
환경기초시설의 건설과 운영이 크게 증가하여 기후변화에 따른 취약성 증가
- 최근 10년간 (’03 ~ ’13) 공공하수처리시설의 수는 878개에서 3,205개(500 톤/일 미만 포함)로 약 4배, 유수지 및 배수펌프장은 363개에서 606개로 약 1.7배 증가하였으며198) 폐수종말처리장의 경우 41개에서 88개로 2배 이상 증가199) 등

자연재해로 인한 상하수도시설 등 환경기초시설 피해 복구비에 많은 비용이 투입되었음에도 불구하고 기후변화에 능동적으로 대응하는데 한계
- 환경부 시설별 재해복구 비급은 매년 기상현황에 따라 변동이 있으나 상하수도시설 등의 환경기초시설에 투입되는 비중은 연평균 60%200)를 상회(※ 참고자료 4-7-1: 환경부 자연재해 피해 복구비 지원내역)
- 기후변화 추이를 반영한 환경기초시설 사고 대응 체계 부재

![그림 4-7-3] 최근 5년(’10~’14) 환경부 재해복구비 연평균 시설별 비율

198) 환경부, 2015, 하수도 통계
199) 환경부, 국립환경과학원, 2014, 공장폐수의 발생과 처리
200) 폐수종말처리시설, 상수도, 하수도, 오수분뇨시설의 연평균 합
나. 주요대책

- 기후변화에 의한 취약성 평가 및 지도 작성
- 기후변화 대응 관리매뉴얼 작성 및 대응 방안 마련

- 기후변화에 의한 취약성 평가 및 지도 작성
 - 기후변화가 환경기초시설에 미치는 영향(침수, 파손, 가동정지 등)과 각 기초시설별 피해현황 및 취약성 특성, 유형에 대한 빅데이터 구축
 - 환경기초시설 취약성 평가 방법 개발 및 평가 시행
 - 기후변화 취약성 지도 작성
 - 취약성 평가를 통한 시설별 취약지도 및 피해 가능성 제시

- 기후변화 대응 기초시설별 관리매뉴얼 제작 및 대응방안 마련
 - 피해에 따른 각 시설별 대책, 취약의 기후시나리오에 따른 대응책 등을 포함한 기술 및 관리 지침 마련
 - 사전예방적 기후변화 대응체계를 구축하여 피해 및 위기 분류체계에 따른 대응방안 목록화 및 조치
 - 상습 침수지역 해소를 위한 빗물관로, 하수저류시설, 펌프장 확대 등 관리방안 마련
 - 원천적 사전예방 대책 마련을 통한 안정적인 기능유지 강화
 - 침수대응 시뮬레이션 기법 적용 및 실시간 제어시스템 도입
 - 강우의 패턴과 유입량 등에 대한 시뮬레이션 적용을 통한 대응시스템 마련 및 실시간 제어시스템 도입을 통한 침수 등 피해 예방
다. 향후 추진 일정

- 기후변화에 의한 취약성 평가 및 지도 작성
 - 취약성 평가 방법 개발 및 평가(‘18∼’19)
 - 기후변화 취약성 지도 작성(‘19∼’20)

- 기후변화 대응 관리매뉴얼 작성 및 대응 방안 마련
 - 기후변화 대응 기초시설별 관리매뉴얼 제작 및 적용(‘18∼’21)
 - 상습 침수지역 해소를 위한 빗물관로, 하수저류시설, 염프장 대폭 확대 등 관리방안 마련(‘18∼’19)
 - 침수대응 시뮬레이션 기법 적용 및 실시간 제어시스템 도입(‘18∼’20)

참고자료 4-7-1

- 환경부 자연재해 피해 복구비 지원내역(‘10∼’14)

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>15,329,512</td>
<td>58,621,215</td>
<td>35,971,363</td>
<td>10,896,501</td>
<td>10,792,168</td>
</tr>
<tr>
<td>폐기물처리시설</td>
<td>1,410,750</td>
<td>1,403,586</td>
<td>2,573,408</td>
<td>57,129</td>
<td>323,101</td>
</tr>
<tr>
<td>폐수종말처리시설</td>
<td>858,777</td>
<td>-</td>
<td>176,770</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>성수도</td>
<td>1,940,205</td>
<td>4,698,763</td>
<td>6,967,444</td>
<td>1,754,225</td>
<td>6,930,916</td>
</tr>
<tr>
<td>하수도</td>
<td>4,812,730</td>
<td>19,108,527</td>
<td>11,876,959</td>
<td>8,105,134</td>
<td>1,631,347</td>
</tr>
<tr>
<td>오수분뇨시설</td>
<td>2,998,075</td>
<td>9,752,606</td>
<td>615,359</td>
<td>60,526</td>
<td>-</td>
</tr>
<tr>
<td>육상쓰레기</td>
<td>1,680,041</td>
<td>5,131,774</td>
<td>6,845,261</td>
<td>366,370</td>
<td>1,878,692</td>
</tr>
<tr>
<td>공원시설</td>
<td>1,256,216</td>
<td>15,193,273</td>
<td>4,285,986</td>
<td>155,909</td>
<td>-</td>
</tr>
<tr>
<td>기타</td>
<td>372,718</td>
<td>3,332,686</td>
<td>2,630,176</td>
<td>397,208</td>
<td>28,112</td>
</tr>
</tbody>
</table>

참고 : 2010 - 태풍 곤파스 등 자연재해 총 22회 발생
2011 - 태풍 무이파 등 자연재해 총 13회, 우면산 산사태 발생
2012 - 태풍 브라벤, 덴빈, 산바 등 자연재해 총 22회 발생
자료 : 국민안전처, 2010∼2014, 재해연보
5. 물환경의 경제·문화적 잠재력 극대화

<table>
<thead>
<tr>
<th>종전 대책</th>
<th>2025 계획</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 전문인력 양성 중심의 물산업 육성</td>
<td>• 물산업클러스터 조성으로 전주기 지원 인프라 구축</td>
</tr>
<tr>
<td>• 민간자본 참여 등 환경기초시설 설치 확대</td>
<td>• 운영 중인 환경기초시설 자산관리 고도화</td>
</tr>
<tr>
<td>• 물환경 정책의 대국민 이해도 제고·홍보</td>
<td>• 친수활동 안전 확보 및 쾌적함 제고, 에코당시하천조성 및 물문화 체험확대</td>
</tr>
</tbody>
</table>

5-1. 물환경관리 전문화로 물산업 창출

가. 현황 및 문제점

- 산업화, 도시화에 따른 물수요 증가와 기후변화 등으로 인한 물부족과 수질오염 등 물수요문제를 해결하기 위한 물산업 성장 추세
 - 세계 물시장(2013년 5560억 달러)은 연 4.3%씩 성장해 2025년 8650억 달러 수준에 이를 전망(GWI)등 Blue Gold 시대로 정의
 - 산업화, 도시화에 따른 물수요 증가, 반도체 시장규모의 약 2배에 달할것으로 예상
 - 미래학자, 20세기에는 석유의 시대(Black Gold), 21세기에는 물의 시대 (Blue Gold)

201) 전 세계적으로 물 사용량은 지난 50년 동안 3배 늘어났으며, 2030년까지 40% 증가할 것이라고 우려받으며, 세계행사연구소(WRI)도 지난 1세기 동안 전 세계 물 사용량 증가율이 인구 증가율의 2배 이상이었다고 하면서, 개발도상국의 경우 도시화로 인해 물 사용량이 더 빠르게 증가할 전망
제 2차 물환경관리 기 본 계획
부록

제 2부
5대 핵심전략별 주요과제

239

- 2013년 기준 국내 물시장 규모는 91억 달러이며, 2018년 106억 달러 시장을 형성하여 연 3% 성장할 전망

- 국내외 물산업 시장의 한계점

 - (국내 물시장 장애물) 국내 물시장의 규모는 매우 크지만 대부분 공공처 시설 위주이며, 이미 국내 상하수도 보급률은 98%(2013년 기준)이므로 국내에서 새로운 수요 창출이 어려움

 - (국외 물시장 현황) 해외 진출시 물산업은 자국의 기간산업인 탓에 보호주의 경향이 강해 기업의 진입장벽이 매우 높음

- 2012년 기준 우리 물관리기업의 해외수주액은 14억 달러수준으로 자동차 수출액의 3%, 스마트폰 수출액의 7%에 불과
상하수도 등 수처리 시설 등에 반드시 사용되는 부품이나 소재 사업은 부가 가치가 높고 상대적으로 진입장벽이 낮고 고객의 충성도가 높음 - 부품, 소재, 기자재 등 제조기반 원천기술을 개발하지 못해 국가차원에서 물산업 해외진출을 통한 부가가치 창출 부족

- 연구개발비 지원 규모 대비 성과는 저조
 - 80년대에 개발을 시작해 확보된 물 기술 대부분은 세계 최고 대비 65% 수준
 - 국내총생산 대비 연구개발비 지원율이 세계 최고가 된 3년 내외로 연구 개발비 규모 면에서도 세계 6위(2013년 541억 달러)로 있지만 성과는 저조
나. 주요대책

- 물산업클러스터 조성으로 글로벌 물기업 육성
- 물산업 분야 전문인력 양성
- 국제 교류 활성화로 물산업 해외진출 지원
- 신시장 발굴 및 활성화를 위한 연구 및 제도개선

물산업클러스터 조성으로 글로벌 물기업 육성

- 물산업 One-Stop 서비스 지원체계 구축
 - 국내 물기업 기술 향상 및 해외시장 진출을 위한 전주기(Life cycle) 지원 인프라 구축
 - R&D단계부터 검증·실증화, 국내 사업화 및 해외진출까지 체계적 지원을 위한 물산업진흥시설(물융합연구동, 워터캠퍼스, Biz센터), 테스트 베드, 기업집적단지 조성

![물산업클러스터 기본 구상도](그림 5-1-3)

- 위치 : 대구 국가산업단지(09 ~ '18) 부지 내(달성군 구지면 일원)
- 면적 및 사업비 : 부지 649천㎡, 투자규모 4,359억원 (국비 2,335억원)
- 사업기간 : 2015 ~ 2018(4년간)
- 주요시설 : 물산업진흥시설(연구동, 캠퍼스, Biz센터), 실증화시설(Test Bed) 및 기업집적단지
싱가포르형 Water Hub 모델을 적용해 물산업 연구개발 역량 강화

- (물융합연구동) 학계·기업 등의 부품, 소재, 기자재 등 제조기반 원천기술 개발 지원을 위한 연구공간, 공용실험실, 기업 실험공간 등 제공
- (분석장비 지원) 기업의 연구, 시제품 생산, 해외인증 지원을 위한 수질 분석 실험실, 재료 실험실 등 분석장비 구축
- (테스트베드) 실증화시설 운영의 유연성 및 가변성, 기술개발의 완결성, ICT 융복합 등에 중점
 - 물 관련 부품·장치·운영기술 개발을 위해 클러스터 내 테스트베드 구축
 - 대구시 환경기초시설(18개소)를 실제 규모의 분산형 TB로 활용하여 검증 및 실적(Reference) 확보로 국내 보급기반 마련
 - 스마트 상수도, 지능형 관망 등 미래 기술수요를 고려한 첨단 융복합 연구 개발이 가능하도록 ICT 기초 인프라 구축

중장기적으로 대구 국가산업단지 입주기업(전자·통신, 첨단기계, 신재생에너지)과 협업을 통해 물, 에너지, 환경을 접목하는 복합 클러스터로 발전

물을산업 분야 전문인력 양성

산·학·연 연계 물산업 분야 전문인력 양성

- 물산업 전문인력 양성(매년 100명), 벤처 물기업 창업 및 성장 지원 등 수주 맞춤형 교육·지원 프로그램 운영
- (워터 캠퍼스) 향후 물산업 클러스터 내 산학캠퍼스를 활용하여 전주기 인력양성체계 구축
 - 물산업 재직자 교육, 석박사 과정 등 연계운영으로 전문성 및 연구지속성 강화
- 소재/시스템 등의 신기술 개발에 대한 벤처기업을 육성시키고 벤처기업에서 개발한 신기술을 대기업이 상품화시키는 협업 시스템 고안
국제 교류 활성화로 물산업 해외진출 지원

해외 정부 간의 교류를 활성화하여 기업의 세계시장 진출 기반 마련
- 외국의 물산업 시장도 정부 등 공공기관에서 발주하는 물량이 다수, 민간 기업이 독자적으로 접근에 한계가 존재하므로 정부 간 교류를 활성화하여 세계시장 진출 기반 마련

글로벌 Biz센터(202) 수립하여 글로벌 마케팅 지원
- 주요국에 대한 글로벌 마케팅 거점 구축, 부품소재 및 기기산업화를 위한 마케팅 지원
- 국가 간 교류 및 자국 기술 홍보를 통하여 해외 대형 프로젝트에 대한 국가 차원의 마케팅 지원 프로그램 개발
- 물산업 시장개척단을 구성하여 수요처와 현지 시공자 및 자재 수입업자의 교류 확대 기회 제공

물산업협의체 구축을 통한 협력 지원
- 중앙정부, 전문기관, 지원기관, 금융, 관련협회 등으로 구성된 협의체 구축 국가 물역량 결집 및 지원

물산업협의체 구축(안)과 운영방안

202) 국제 정보교류, 수출 지원(금융·마케팅·컨설팅) 등 물산업 국제 비즈니스를 위한 행정지원 공간, 제스트하우스 등
신시장 발굴 및 활성화를 위한 연구 및 제도개선

- 국내 물산업 체질 개선
 - 국내 물산업의 주력 분야를 수처리 공법 중심에서 기기·장치·설비류 중심으로 전환
 - 상하수도 등 수처리 시설 등에 반드시 사용되는 펌프, 밸브, 계측기, 관로 등은 상대적으로 진입장벽이 낮고 고객의 충성도와 부가가치가 높음
 - 부품이나 소재 등을 다루는 중견중소 기업을 주축으로 세계시장에서 장기적 영향력을 확대할 수 있도록 지원제도 수립

- 선택과 집중의 R&D 투자
 - 측정센서 개발 등 수요가 적어 기업에서 독자 개발하기에는 어렵지만 물산업 육성에 있어 꼭 필요한 분야에 대해서는 과감하고 차별화된 지원책 마련

- 물의 생산·공급·처리 등 전 과정의 전문화로 물산업 발전 촉진
 - 환경기초시설 관리자, 비점관리 및 물순환 시설 설치 등에 높은 전문성 및 기술조건을 요구하여 물환경 관리 기업의 전문화도 모, 관련 분야의 물산업 시장 확대

다. 향후 추진 일정

- 물산업클러스터 조성으로 글로벌 물기업 육성
 - 대구 물산업클러스터 조성 완료(‘19)

- 물산업 분야 전문인력 양성
 - 워터 캠퍼스 등 물산업 분야 전문인력 양성(‘19∼)

- 국제 교류 활성화로 물산업 해외진출 지원
 - 글로벌 Biz센터 운영(‘18∼)
 - 물산업협의체 구축 및 운영(‘17∼)
UN에서는 MDGs가 마무리되는 올해부터 새로운 목표, 즉 2015년까지 달성할 지속가능한 개발 목표(SDGs)를 설정하고 국제적인 노력과 공적개발원조(ODA) 등 공적투자를 확대

개도국을 중심으로 도시화산업화가 끝나고 물부족과 수질오염은 더 심해져서 투자수요는 경제발전에 따라 필요하게 되며, 선진국들은 노후 인프라에 대한 재투자와 유지관리 등 세계 물 시장은 지속적으로 성장될 것으로 예상.
- 2050년 세계인구는 90억명으로 증가 예상되며, 도시화의 속도가 더욱 가속화되어 세계인구의 69.6%(64억명)가 도시 거주, 인구증가수보다 물사용량이 더 높은 증가 경향을 보임에 따라 물부족이 심화될 것으로 예상.

(프랑스) 자국 기업의 해외진출 지원에 중점을 두고 해외진출 지원전략 수립

- 수도사업의 민간위탁 발달로 세계적 시장 경쟁력을 갖춘 Veolia(연매출 20조 원), Suez(연매출 10.9조 원) 등과 같은 대형 물 기업을 보유
- IOW(International Office for Water)를 설립하여 해외 경제지원사업자국 채굴기업의 동반 진출 지원
- 2001년 상하수도 서비스 국제표준(ISO/TC224) 도입 제안 등 자국 물 기업 서비스의 국제 표준화를 통해 해외 물시장 점유 확대를 도모.

(일본) 자국의 강점(ODA, 기술력, 지자체 운영능력 등)을 활용한 범정부차원의 해외 진출 활성화 지원정책을 본격 추진.

- 2010년 물산업 육성 전략과 물 산업 해외 진출 활성화 방안을 발표, 2020년까지 세계적 물 기업 8곳 육성 및 37,000개 일자리 창출과 2025년 세계 물시장 6%(1.8조 엔) 점유를 목표로 제시
- 2010년 호주, 칠레 등 해외 물 기업 인수와 M&A를 통해 현지화 확대하는 등 가시적인 성과 달성.

(이스라엘) 2005년 이래로 국가 성장전략 차원에서 물산업 육성 추진 중이며, 18개 정부 부처 및 관련 기관이 참여하는 NEWTech(Novel Efficient Water Technology) 착수.

- 2020년 해외수출 200억 달러의 물 산업 기술 분야의 실리콘벨리(the Silicon Valley of Water Technology) 도약 목표 제시.
- 범정부 차원의 물 산업 육성정책과 Mekorot(수자원공사) 중심의 클러스터링 전략을 통해 2005년 이후 물산 산업 해외수출 증가 연평균 26% 달성.
- Mekorot의 공동연구개발, 기술보증, 마케팅 등 물 산업 앵커역할의 성공적 수행으로 세계 물 사업을 선점

○ 20여 개 분야 총 270개에 달하는 중소벤처 기업들을 통해 글로벌 물 산업 첨단기술 (advanced water technology) 시장을 창출, 현재 100여 개 국가에 수출 중

◆ (싱가포르) 싱가포르 수자원공사(PUB)는 세계 유수 기업이 참여하는 물산업 클러스터를 조성하여 글로벌 물 산업 허브 구축을 추진

○ 2015년까지 국제 물 산업 허브 도약을 목표로 수자원공사를 중심으로 물 산업 클러스터를 구축하여 70개가 넘는 국내외 기업 및 연구기관, 6천여 명에 이르는 물산업 종사자들이 연구개발에서 사용화까지 긴밀한 협업관계를 유지

○ PUB는 물 산업 허브의 운영기관으로서 물 산업 클러스터 역할 수행과 기술개발 및 역량 강화, 국제화 등 물 산업 육성프로그램을 시행

- 자국 물 산업 플래그십 프로젝트에 자국 기업을 참여시켜 단기간에 물산업 육성과 세계 최고 수준의 물산업 기술력을 확보 향수시스템 제조회사인 Hyflux사는 정부 주도의 NEWater Project(물 재생 프로그램)에 참여하여 세계적인 물 전문기업으로 성장

(프랑스, 일본, 싱가포르 사례자료: 한국과학기술기획평가원, 2013-07)

◆ 싱가포르 물기업 하이플럭스(Hyflux) : 기술력으로 승부

○ 멤브레인 기술력을 바탕으로 전 세계 400개 지역에서 약 1,000개의 프로젝트를 수행하며, 글로벌 기업으로 도약한 물 전문기업

- 2000년대 이후 매출이 급성장하며 글로벌 선도 기업으로 부상 중
 • 1989년 자본금 약 2만 달러와 종업원 3명으로 창업해 2001~2011년 매출 25배, 시가총액 6배 증가
 • 글로벌 멤브레인 수처리 기업 중 6위(204), 해수담수화 기업 중 8위(205)
 • 멤브레인 생산부터 시설의 설계/시공, 운영까지 토플 솔루션을 제공
 • 멤브레인을 자체 개발하여 1999년부터 양산, 현재 아시아 물기업으로는 유일하게 역삼투 (RO: Reverse Osmosis) 멤브레인 기술을 보유
 • 멤브레인 기술력을 바탕으로 산업용 수처리, 재이용 수처리, 해수담수화 등 기술 집약적 고 부가 사업에서 두각

203) 오염물질을 분리해낼 수 있는 미세공을 가진 막, 기존 물리화학적/생물학적 처리공정보다 수질개선효과가 우수하고 약품을 사용하지 않아 친환경적인 수처리 기술
205) GWI Desalination.com. 2000~2011년 시장 수주 실적 기준
<http://www.desalination.com/market/desal-markets>
물 부족을 겪고 있는 신흥국을 집중 공략하여 글로벌 입지를 확보

- 인구 대비 수자원량이 절대적으로 부족하고, 경제 성장으로 물 수요가 크게 증가할 것으로 예상되는 국가(중국, 인도, MENA) 위주로 진출
 - 국가별 매출 비중: 중국(29%), MENA(24%), 싱가포르/인도 등(47%)
- 사업 초창기인 1994년에 일찌감치 중국 시장에 진출하여 산업용 수처리 분야에서 실적을 쌓은 후 공공 수처리 분야로 확장
 - 중국 내 26개 지역 500개 공장의 수처리 시설 시공 및 운영 실적을 쌓은 후, 2004년 탱진의 중국 최대 해수담수화 시설 수주에 성공
 - 중국 진출 전략의 일환으로 중국 출신을 적극 채용, 중국 문화에 친화적인 조직을 구성
- 인도와 MENA 지역에서의 대형 수주를 통해 제2의 도약에 성공
 - 2008년 세계 최대 펜브레인 해수담수화 시설인 알제리 마그타(Magtaa) 플랜트(1일 처리량 50만 톤, 급수인구 500만 명) 수주에 성공
 - 2012년 인도 내 아시아 최대 해수담수화(1일 처리량 34만 톤) 프로젝트 수주에 성공

(자료: 물산업 강국으로 부상하는 싱가포르(삼성경제연구원, 2012))
5-2. 환경기초시설 자산관리 고도화

가. 현황 및 문제점

- 한국은 이미 "인프라 고령화 시대"로 진입하여 사회경제적 비용 증가
- 제대로 된 유지 관리 없이 70년 이후부터 지속적인 물환경 인프라시설 설치(206)와 확대로 인해 30년 이상의 경과한 상·하수도 및 하천시설의 노후화, 14년 14.9% → 25년에 40.5% → 35년에 65.8%로 증가 전망(207)
- 노후화 시설물을 전면 교체 및 유지관리비 부담, 이에 따른 지자체의 재정 악화 가중, 서비스 공급실패에 따른 사회·경제적 비용 증가

<table>
<thead>
<tr>
<th>구분</th>
<th>시설</th>
<th>노후화율(%)</th>
<th>평균노후화율</th>
</tr>
</thead>
<tbody>
<tr>
<td>상수도시설</td>
<td>수도관로</td>
<td>9.6</td>
<td>16.64</td>
</tr>
<tr>
<td></td>
<td>정수장</td>
<td>18.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>취수장</td>
<td>33.4</td>
<td></td>
</tr>
<tr>
<td>하수도시설</td>
<td>하수관거</td>
<td>14.1</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>하수처리시설</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>하천시설</td>
<td>제방</td>
<td>4.3</td>
<td>10.75</td>
</tr>
<tr>
<td></td>
<td>수문 및 통문</td>
<td>17.2</td>
<td></td>
</tr>
</tbody>
</table>

자료: 도시하천 물환경 서비스 제고를 위한 물인프라 자산관리 방안(KEI, 2014)

- 국내 현행 물인프라 유지관리의 다양한 법적, 기술적, 제도적 문제점이 존재
- 하수도 자산의 소유 및 관리주체 법적 불명확(208)

206) '12년 정부 하수도보급률은 91.6%, 하수관리보급률은 75.8%, 하수처리시설 3,613개(시설용량 500㎥/일 이상 546개소, 시설용량 500㎥/일 미만 2,858개소) 등 급속한 발전을 이룬 (환경부, 2014, 하수도통계)
207) 새로운 유지보수와 증설이 없는 가정하에 계산된 값, 출처: 도시하천 물환경 서비스 제고를 위한 물인프라 자산관리 방안(KEI, 2014)
208) 하수도법 제3조에 의해서 하수도시설의 소유 및 관리 주체는 지방자치단체이지만, 지방자치단체 회계 규정에 명시되어 있지 않아 지자체의 자산관리에 대해 불명확한 문제점이 있고, 500㎥ 이상의 대규모 공공하수처리시설의 경우에는 '시로법'에 의해 국토교통부장관이 시설물 안전과 유지관리를 맡고 있으나, 실제로 부처별 예산을 보면 환경부에서 하수도 확충 및 관리에 대한 예산을 부담하고 있다 (KEI, 2014).
- 특별법(시특법)과 하수도법·하천법의 상충으로 시설물 관리가 중복 및 분산

- 기본적인 시설물 상태 파악 외에 서비스 수준점검 및 유지를 위한 사전 예방적 중장기 전략계획 부재

- 시설물 내용연수에 따른 시설물 이력관리와 이에 대한 정보체계구축을 위한 기술 및 정보가 부재

- 예방적 유지관리 평가 기준 부재 및 보수보강 시기의 계획과 시행을 위한 유지관리 매뉴얼과 관리기준 미흡
 - 현재 시설물의 내용연수는 ‘법인세법’에 따라 하수도 및 기타 전동이 심하거나 부식성 물질에 노출된 것은 기준 내용연수로 지정하고 하수의 경우 5년, 수도사업의 경우 20년으로 정하고 있는 현황
 - 상하수도시설의 경우 경제적 내용연수가 아닌 세법에서 규정한 자산별 내용연수가 적용되고 있어 실제 경제적 내용연수와 거리가 있음

- 시설물 유지·관리를 위한 필수적인 시설물 관련 정보 구축 및 관리 미흡
 - 하수도시설물에 대한 구축연도, 설치비, 하수도 보수보강 비용에 대한 DB 부족
 - 시설안전공단이 시설물 정보를 관리하는 업무를 맡고 있지만, 실적적으로는 적절한 이력 관리가 제대로 이루어지지 못함

- 예산편성과정에서 객관적인 예산확보에 제약을 가지고 있으며, 유지관리 사업의 타당성 검토 및 우선순위를 결정하는데 합리적인 기준 미비

209) 「시특법」에서 5년마다 각 시설물의 안전 및 유지관리 기본계획을 수립, 시행하고 있으며, 시설물의 안전등급에 따라 정밀점검(1~4년에 1회 이상), 정밀안전 점검(4~6년에 1회 이상)을 실시하도록 하고 있는데, 「하수도법」에서는 5년마다 공공하수도에 대한 기술진단을 실시하여 유지보수하도록 되어 있다. 특히, 「시특법」은 타 법보다 상위법이기 때문에 500톤 이상의 공공하수처리시설의 경우 「시특법」을 따라야 하며, 다른 하천시설물 역시 마찬가지다. 따라서 하천 및 하수도시설물에 대한 관리 중복의 우려가 있다. (KEI, 2014)

210) 현재의 하천법 및 하수도법의 유지관리 체계는 점검, 예산신청, 조치의 단순한 체계로 되어 있어.

211) 효율성을 위한 시설 개보수를 위해서 시설물의 노후화 정도를 평가해야만 이에 대한 구체적 기준이 없음
표 5-2-2 지방하천 및 소하천에 대한 지방자치단체 예산 지원 기준

<table>
<thead>
<tr>
<th>하천 구분</th>
<th>예산 지원 기준</th>
</tr>
</thead>
</table>
| 지방하천 | 지자체별 지방하천 미개수연장(20%)
전년도 예산비율(60%)
전년도 실질행사에 따른 차등 편성(±10%) |
| 소하천 | 사업수요-투자우선순위 평가결과(70%)
추진의지-사업추진 실적에 및 국비 이월률 등(30%) |

- 시설물의 생애주기 관점으로 접근하여 사용기간을 늘리고, 비용 효율성을 제고하여 중요한 사회적 자산으로 인식하게 할 수 있는 자산관리 제도도입 필요(※ 참고자료 5-2-1: 환경기초 시설 자산관리제도 개념, 참고자료 5-2-2: 자산관리 단계별 현황, 문제점, 개선방안)

- (자산의 상태) 통계 자료 부족과 체계적이지 못한 데이터관리 방법
 - 세 등급의 자산 상태 평가 기준은 모호하여 노후화 정도 및 추이를 알 수 없고 유지관리 우선순위 반영에 어려움
 - 하수도의 내용연수는 장부가치(20년~30년) 기준을 따라 서비스·경제적 수명 고려가 미비하고 고장 유형에 따른 잔존수명 결정 기준 부재
 - 하수도자산의 생애주기적 접근 방법의 부재
- (서비스 수준) 사용자 가치를 반영한 서비스 수준 기준 부재
- (중요 자산) 위험도 분석을 통한 우선순위 선정에 따른 유지관리가 아닌 사후 대응적인 관리로 위험도 분석 방법 부재
- (운영관리 및 자본투자전략)
 - 운영관리 최적화 전략의 부재에 따른 비효율적 비용관리, 예산 낭비 초래
 - 자본투자 최적화 방법 부재
- (장기투자 전략) 전년도 예산 비율에 의존하며 하수도 유지관리 소요 예산에 대한 지속가능한 재정 확보 방안 미비
 - 하수도의 유지관리 예산 계획 수립을 위한 체계 미비
나. 주요대책

* 환경기초시설 자산관리를 위한 제도 정비
* 환경기초시설 자산관리 현황 조사 및 표준 가이드가인 수립
* 환경기초시설 자산관리시스템 구축 및 자산관리 시범사업 추진

확장기자리설 자산관리를 위한 제도 정비

- 환경기초시설 자산관리 체계 기반 마련을 위해 관련 기본계획 항목에 ‘자산
 관리계획’ 추가
- 하수도시설 자산관리 체계 기반 마련을 위해 하수도정비기본계획 항목에
 ‘하수도시설 자산관리계획’ 추가
- 자산관리계획 수립 지침, 자산관리 실무지침 등 업무 단계별 지침(매뉴얼)
 개발
- 환경기초시설 상태평가 등 자산관리에 필요한 기초자료 조사·관리방안 마련
- 환경기초시설 운영성과평가, 지방공기업평가, 재투자비용 국고지원 등 정책
 추진 시 지자체 자산관리 수준 반영
 - 자산관리체계 도입 절차 : (1단계) 정책수립, 시스템 개발 ⇒ (2단계) 시범
 적용 및 평가 ⇒ (3단계) 확산 및 운영

확장기초시설 자산관리 현황 조사 및 표준 가이드가인 수립

- 시설물의 자산목록을 구축하고 관리기록 체계의 전산화를 통해 GIS화 및
 자산 DB화
- 서비스 수준(LoS) 결정, 주요자산 중요성 평가, 생애주기비용(LCC) 추정
 등에 대한 표준 가이드라인 수립
- 시설자산 운영 및 유지보수에 필요한 자급조달 방안 등 중장기 재무전략
 수립 지원
화경기초시설 자산관리시스템 구축 및 자산관리 시범사업 추진

- 지역별, 시설 규모별로 자산관리 효과 집중 시범사업 추진
- 화경기초시설에 대한 효율적 자산관리를 통하여 자산의 수명 증가 및 유지관리비 감소, 이에 따른 재투자비 재정소요 절감효과 등 분석
- ‘화경기초시설 종합정보관리시스템’을 활용한 하수도 자산관리시스템 개발 구축

다. 향후 추진 일정

- 자산관리 관련 법률 및 제도 정비(~’19)
- 화경기초시설 자산상태 평가를 위한 자산목록 구축 및 잔존수명 기준 마련 (~’19)
- 자산관리시스템 구축 지침 마련 및 시범 적용(~’20)
- 시설물의 자산관리 계획 수립 및 자산관리시스템 시범 구축 및 적용(~계속)
물류관리자 자산관리 개념^{212)}

- 자산관리(Asset Management)는 특정한 문제를 해결하기 위한 도구가 아닌 프로세스의 재설계, 이를 수행하는 조직의 재설계, 철학적 패러다임의 전환을 의미
- 과거 수동적인 사후 대응형 유지관리 체계에서 시설물의 안전성, 사용성, 경제성을 고려한 사전 능동적인 관리체계로의 전환임

다양한 인프라 자산관리 정의^{213)}

<table>
<thead>
<tr>
<th>구분</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Federal Highway Administration(FHWA) Asset Management Primer</td>
<td>- 비용 효율적인 측면에서 물리적 자산을 유지관리하고 상태를 항상, 운용하는 체계적인 프로세스 - 공정한 원리와 비용을 감상한 경영과학 실무 및 경제학 이론을 조합하여 의사결정을 위한 더욱 조직적이고 논리적인 접근법 도출 - 이로서, 자산관리는 단기 및 장기 계획을 다루기 위한 기본 구조를 제공</td>
</tr>
<tr>
<td>American Public Works Association-Asset Management Task Force</td>
<td>- 타당한 목표 및 목적이어서 효율적이고 공정하게 자원을 분배하는 방법론 - 개별적인 관리시스템의 유용성을 항상, 엄밀한 분석을 통한 확실한 투자 자료를 제공 - 기존의 시스템 및 방법론을 대체하는 것이 아니라, 이들 결과를 확장하고 개정하는 작용</td>
</tr>
<tr>
<td>Organization for Economic Cooperation and Development(OECD)</td>
<td>- 공학적인 원리와 적절한 경영방법 및 경제과학 합성을 결합하고 공공의 기대 목표를 달성하는데 필요한 의사결정을 더욱 조직적이고 효율적으로 함으로써 자산을 유지관리, 개량, 운용하는 체계적인 프로세스</td>
</tr>
<tr>
<td>Austroads</td>
<td>- 공공의 이익을 효율적이고 효과적으로 창출해내기 위한 도구로서, 자산의 장기적 관리로의 합리적이고 조직화된 접근방법</td>
</tr>
</tbody>
</table>
제 2차 물환경관리 기 본계획 부록

제 2부 5대 행정장관별 주요과제

254

<table>
<thead>
<tr>
<th>구분</th>
<th>FM(Facility Management)</th>
<th>AM(Asset Management)</th>
</tr>
</thead>
<tbody>
<tr>
<td>개요</td>
<td>시설물의 결함, 내구연수 도래에 의한 교체 및 보수 보강 등을 주어진 예산 범위 내에서 집행하는 관리 형태</td>
<td>요구되는 LoS를 맞추기 위하여 시설물의 설계기반비용 분석을 바탕으로 최적의 유지관리 계획을 수립</td>
</tr>
<tr>
<td>서비스의 수준(Level of Service, LoS)</td>
<td>관리자 관점에 따른 최소한의 기술적LoS 제공하는 입장만큼 고려</td>
<td>서비스 목표 달성과 성능 측정을 분명하게 제시</td>
</tr>
<tr>
<td></td>
<td>사용자의 만족도를 고려한 사용자가치 미포함</td>
<td>각각의 성능 측정에 대한 목표치는 최소비용으로 최고의 고객가치를 실현하기 위한 사용자의 요구 반영</td>
</tr>
<tr>
<td>장단점</td>
<td>고장 및 파손에 관한 대응형 관리로 장기적 계획 부재</td>
<td>법적, 제도적 유행적 필요</td>
</tr>
<tr>
<td></td>
<td>이상치 못한 시설물의 상태 변화에 따른 유지 관리 전략 변화가 어려움.</td>
<td>지속적인 자산관리 성과 분석 필요</td>
</tr>
<tr>
<td></td>
<td></td>
<td>실행적이고 장기적인 예산 절감 효과</td>
</tr>
</tbody>
</table>

자료: 미국 EPA (http://water.epa.gov/infrastructure/sustain/am_training.cfm).

†212) 오재일, 2015, 하수도 분야 미래비전 발표자료 참조
†213) 오재일, 2015, 하수도 분야 미래비전 발표자료 참조
하수도 자산관리 도입을 위한 현황 및 개선 방안

<table>
<thead>
<tr>
<th>단계</th>
<th>현황</th>
<th>개선 방안</th>
</tr>
</thead>
</table>
| 1. 자산의 상태 | • 하수도 통계 자료 부족
 • 공무원 설문 결과 데이터관리 방법이 체계적이지 못함.
 • 국가회계법 평가 대상에서 제외되어 현황 파악에서 중요도가 감소 | • 하수도 자산 목록의 계층화 및 기록 체계 필요
 • 자산 현황의 GIS화 및 DB구축, 전산화 시스템 개발
 • 하수도를 포함하도록 자산 조사 및 평가 체계 개선 |
| 2. 자산 상태 평가 기준이 모호 | • 자산 상태 평가 기준 모호
 - A.B.C 세 등급으로 노후화 정도 및 추이를 알 수 없음.
 - 유지관리 우선순위 반영에 어려움. | • 상태 평가를 위한 자산 현황 파악 등 하수도시설 전체에 대한 기초 데이터 구축
 • '시특법'의 안전등급 외에 하수도의 정기적인 상태 평가를 위한 제도 마련
 • 국내 실정에 맞는 하수도 상태 평가 등급 표준화가 필요 |
| 3. 자수도의 내용연수는 장부가치 (20년~30년) 기준에 의존 | • 하수도의 내용연수는 장부가치 (20년~30년) 기준에 의존
 - 서비스 수명, 경제적 수명 고려 미비
 - 고장 유형에 따른 진존수명 결정 기준 부재 | • 장부가치가 아닌, 하수도의 서비스 수명을 판단할 수 있는 적정한 내용연수 기준 수립
 • 수명 기준에 따른 노후화 추이 과정 및 노후화 모델 개발 |
| 4. 하수도자산의 생애주기적 접근 방법의 부재 | • 하수도자산의 생애주기적 접근 방법의 부재 | • 자산의 상태, 위험 분석, 운영관리, 경신 교체, 전략수립 등의 과정을 통한 체계적 수명주기 이용 예측 방법 개발 |
| 5. 사용자 가치를 반영한 서비스 수준 기준이 부재함 | • 사용자 가치를 반영한 서비스 수준 기준이 부재함. | • 지자체별 현황에 맞는 서비스 수준 목표 설정을 위한 적절한 평가지표 선정 및 제도화
 • 하수도의 서비스 수준에 대한 인식 개선을 위한 교육 및 홍보 |
| 6. 위험도 분석 방법 부재 | • 위험도 분석 방법 부재
 - 위험도 분석을 통한 우선순위 선정에 따른 유지관리가 아닌 사후 대응적인 관리 | • 위험도 분석을 통해 자산관리 우선순위를 선정할 수 있도록 위험 분석을 위한 기준 및 결과 등급 설정 |

참고자료 5-2-2

제 2차 물환경관리 기본계획 부록

제 2부 5대 핵심전략별 주요 과제

214) 한국환경정책평가연구원, 2014, 도시하천의 물환경 서비스 제고를 위한 물인프라 자산관리 방안
<table>
<thead>
<tr>
<th>단계</th>
<th>현황</th>
<th>개선 방안</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV. 운영관리 및 자본투자 전략</td>
<td>7</td>
<td>운영관리 최적화 전략 부재 - 비계획적 관리로 인한 비효율적 비용관리, 예산 낭비</td>
</tr>
<tr>
<td></td>
<td></td>
<td>자본투자 최적화 방법 부재</td>
</tr>
<tr>
<td>V. 장기 투자 전략</td>
<td>9</td>
<td>하수도 유지관리 예산 계획 수립을 위한 체계 미비, 하수도 유지관리 소요 예산에 대한 지속가능한 재정 확보 방안 미비 - 전년도 예산 비율에 의존</td>
</tr>
<tr>
<td></td>
<td></td>
<td>자산관리 시스템에 대한 인식 부족, 자산관리 도입을 위한 기초 데이터 구축 및 기술적인 요소 부족, 자산관리 계획을 수립하기 위한 조직 및 제도적인 도구가 없음.</td>
</tr>
</tbody>
</table>
국외 사례 5-2-1

뉴질랜드 플랜티 베이(Bay of Plenty) 시의 하천과 배수시설물 자산관리

- 하천과 해안이 맞닿아 있어 홍수에 취약. 매년 홍수 피해 반복
- 지역 위원회에서는 지역의 홍수와 관련된 모든 자산을 통합관리하기 위해 하천과 배수시설의 자산관리 도입
- 자산의 계층을 상위구조(침식방지시설/펌프시설/홍수방지시설/구조물/수로)로 나누고, 각각에 대한 하위 자산 목록 구축
- 자산 목록과 함께, 각각의 자산별로 자산의 수명, 잔존 수명, 대체비용 등에 대해 작성하여 자료의 신뢰도 향상을 위해 6개월마다 보완
- LOS 설정을 위해 서비스 제공자의 일반적 통보 방식에서, 사용자 중심의 가치를 반영(다양한 지역 사회의 목소리 반영)

<플랜티베이 자산목록 구축 및 통합적 정보관리 예시>
5-3. 친수활동 안전 및 쾌적함 제고

가. 현황 및 문제점

○ 국민여가활동 증가 및 친수공간 개념의 변화에 따라 단순 감상용에서 직접 물 체험형으로의 친수활동을 빠르게 증가

- 국내 친수활동은 하천·호수·계곡 등 공공수역의 친수활동과 물놀이형 수경시설을 이용하는 친수활동으로 크게 분류
 - ’08년 전국 물놀이 현장 자료 전국 물놀이 지역 중 총 565 지점 중 일일 평균 이용객 수가 400명 이상인 지점이 60개 지점으로 파악(’08년 현황) (※ 참고자료 5-3-1: 일일 평균 400명 이상 친수활동 위치)
 - 물놀이형 수경시설 : 바닥분수 등 지자체에서 운영하는 물놀이형 수경시설이 2011년 606개에서 2015년 971개로 연평균 11% 가량 증가

〈표 5-3-1〉유형별 물놀이형 수경시설 현황(2011～2015년)

<table>
<thead>
<tr>
<th>연도</th>
<th>합계</th>
<th>바닥분수</th>
<th>일반분수</th>
<th>인공실개천</th>
<th>벽면분수</th>
<th>기타</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015년</td>
<td>971 (100%)</td>
<td>701 (72.2%)</td>
<td>73 (7.5%)</td>
<td>58 (6.0%)</td>
<td>40 (4.1%)</td>
<td>99 (10.2%)</td>
</tr>
<tr>
<td>2014년</td>
<td>868 (100%)</td>
<td>621 (71.5%)</td>
<td>91 (10.5%)</td>
<td>44 (5.1%)</td>
<td>37 (4.3%)</td>
<td>75</td>
</tr>
<tr>
<td>2013년</td>
<td>802 (100%)</td>
<td>570 (71.1%)</td>
<td>98 (12.2%)</td>
<td>48 (6.0%)</td>
<td>43 (5.4%)</td>
<td>43</td>
</tr>
<tr>
<td>2012년</td>
<td>720 (100%)</td>
<td>506 (70.3%)</td>
<td>81 (11.3%)</td>
<td>51 (7.1%)</td>
<td>44 (6.1%)</td>
<td>38</td>
</tr>
<tr>
<td>2011년</td>
<td>606 (100%)</td>
<td>325 (53.6%)</td>
<td>175 (28.9%)</td>
<td>35 (5.8%)</td>
<td>42 (6.9%)</td>
<td>29</td>
</tr>
<tr>
<td>연간 증가율</td>
<td>12.6%</td>
<td>22.5%</td>
<td>Δ14.9%</td>
<td>15.8%</td>
<td>Δ0.8%</td>
<td>37.7%</td>
</tr>
</tbody>
</table>

215) 친수활동(공간 포함)은 기존 수경시설 및 수영장 등 신체가 물과 직접적으로 접촉하거나 일부 의도치 않은 응용이 가능함 수도 있는 활동. 시설 및 공간을 의미
216) 물놀이형 수경시설은 크게 바닥분수, 일반분수, 벽면분수, 인공실개천 등으로 구분하며, 기타에는 물놀이형 어린이놀이시설, 연못 등이 있음
217) 가동 중 869개
늘어난 물놀이형 수경시설에 비해 시설들의 수질관리는 미흡함
- 실제 가동 중인 869개 중 3.1%인 27개가 수질기준 초과(’15년)
- 수질기준을 초과한 수경시설은 바닥분수가 19개, 인공실개천이 3개, 벽면 분수가 2개 등이며 수질기준을 초과한 항목은 대장균 20개(74%), 탕도 3개(11%), 수소이온농도 4개(15%)
- 수경용수의 수질관리가 소홀할 경우, 각종 세균 감염, 위장 질환(구토, 설사), 피부염, 수인성 전염병 매개 등 보건환경 측면에 문제가 발생

(표 5-3-2) 가동 중인 물놀이형 수경시설 관리실태(2011∼2015년)

<table>
<thead>
<tr>
<th>구분</th>
<th>가동시설</th>
<th>부적정 관리</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>계</td>
<td>적정 관리</td>
</tr>
<tr>
<td>2015년</td>
<td>869</td>
<td>801</td>
</tr>
<tr>
<td></td>
<td>(100%)</td>
<td>(92.2%)</td>
</tr>
<tr>
<td>2014년</td>
<td>804</td>
<td>622</td>
</tr>
<tr>
<td></td>
<td>(100%)</td>
<td>(77.4%)</td>
</tr>
<tr>
<td>2013년</td>
<td>764</td>
<td>588</td>
</tr>
<tr>
<td></td>
<td>(100%)</td>
<td>(77.0%)</td>
</tr>
<tr>
<td>2012년</td>
<td>691</td>
<td>527</td>
</tr>
<tr>
<td></td>
<td>(100%)</td>
<td>(76.3%)</td>
</tr>
<tr>
<td>2011년</td>
<td>567</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>(100%)</td>
<td>(72.3%)</td>
</tr>
</tbody>
</table>

호수, 하천, 제곡 등 공공수역의 친수활동이 증가하나 ’08년 이후로 친수 구역현황 파악이 미비하며 친수 수체 내 수질측정망이 없어 수질상태 등 현황파악이 미비
친수활동이 일어나는 공공수역의 친수활동에 대한 예보나 경보 제도 미비
- 친수활동 수역 파악 필요
- 친수활동 수역의 모니터링 지점 및 대장균 등 관련지표 데이터 부족
- 친수활동에 관련된 대장균 예측 모델 수립 및 예보일 확대 필요

218) '16년부터 이행될 조류경보제 개선방안에는 뱃놀이, 보트타기 등의 친수활동을 하는 강이나 하천 구간은 시도지사가 필요시 친수용 조류경보제를 도입할 수 있도록 하였다. 아울러 친수용 조류경보제 조류경보제 도입에 따라 경보발령 시 대국민 행동요령을 신설하는 등의 개선과제를 제시했다.
나. 주요대책

- 친수수역 및 수경시설 DB 구축
- 친수·수경시설 통합관리를 위한 법령 등 관련 법·제도 구축
- 친수·수경시설 수질기준 확대 및 관리 가이드라인 마련
- 친수환경 정보 현장 실시간 확인 시스템 구축

[▲] 친수수역 및 수경시설 DB 구축
- 현재 운영중인 공공 및 민간 친수수경시설에 사용되는 용수의 수질을 조사하고 DB화 할 수 있는 체계를 마련(‘16∼’18)
 - 친수활동이 일어나는 공공수역 DB 구축
 - 물과 접촉하는 친수 또는 수경시설의 수질 현황 및 피해사례 조사

[▲] 친수수경시설 관리를 위한 법 제도 구축
- 친수수경시설 관리를 위한 법령 등 관련 법·제도 구축(‘17∼’18)
 - 체계적이고 합리적인 규제와 관리를 지속적으로 수행함으로써 국민이 안심하고 친수활동을 할 수 있는 기반을 마련
 - (친수경보/친수예보제 도입) 시·도지사 친수활동이 일어나는 공공수역의 현황파악 및 검토하여 친수수역으로 지정한 후 친수경보제 또는 친수예보제 운영

[▲] 친수수경시설 수질 기준 및 관리 가이드라인 마련
- 국내 실정에 적합한 친수수경시설의 수질 기준 마련(‘17∼’18)
 - 실태조사 결과 및 외국의 사례 등의 검토를 토대로 국내에 적합한 기준마련
- 친수·수경시설 유지 및 관리, 기술 가이드라인 마련(‘17∼’18)
 - 안전한 수질이 지속적으로 관리될 수 있도록 수질개선 및 유지 기술 가이드라인 및 지침을 마련
친수환경정보현장실시간확인시스템구축
- 친수활동수역및공공시설의수질현황및피해사례등친수활동관련
정보의DB를구축하고ICT기술을활용하여국민에게맞춤형친수활동
안전관련실시간수질정보공개

다.향후추진일정

물놀이형수경시설관리강화
- 물놀이형수경시설관리제도시행(’17.1월~)
 -시설설치·운영신고의무화,수질기준강화,관리기준적용등
- 물놀이형수경시설운영·관리가이드라인마련(’17년)
 -시설운영자등이수질및시설관리를위해참고할세부사항규정
- 수경시설관리제도의적용대상확대및수질·관리기준강화(’18~’20년)
 -아파트등민간수경시설까지제도적용대상범위확대및수질·관리기준
강화필요성검토

친수수역(주요물놀이지역)수질모니터링및관리
- 물놀이주요지역조사및현행화,기존관리지침검토·보완등을위한
연구용역추진,물놀이수질관리지침고시(’17년)
- 주요물놀이지역수질조사및결과정보공개,기준초과시조치이행(’17년~)
- 전국물놀이지역중일평균400명이상이용하는60개소(상위10%)에수영
외수상레저등물놀이행위지역,물놀이관련축제·행사지역등을추가·
확대(’18년~)
일일 평균 이용객 400명 이상 레크레이션 지점 ('08 현황)

'08년 환경부에서 실시한 전국 물놀이 현황 자료에 의하면 (환경부, 2008), 전국의 물놀이지역은 562개소이며, 이중 1일 평균 이용객이 400명이상인 지역은 60개소로서 전국 물놀이지역 이용객의 64% (66천명)를 차지.
주요 국가별 친수용수 수질 기준 비교

일본의 경우는 용수 시설의 종류에 관계없이 인체의 건강에 관련되는 경우는 사람의 건강과 관련된 환경기준을 적용하도록 관리하고 있으며 수경시설도 입욕 및 음용 가능성이 있으므로 먹는 물과 동일한 수질 기준을 적용하도록 권장하고 있다 (일본 환경성, 수질오탁에 관한 환경기준 내 인체 건강보호 관련 환경기준).

유럽연합의 경우는 유럽연합의회에 의해 제정된 5개 법령(directives)들이 유럽연합 각국들이 최소 준수해야 하는 수질 기준을 규정하고 있으나 넓은 범위만을 규정하고, 세부적인 관리는 각 유럽연합 회원국 및 지방자치단체에서 규정하며 주로 bathing water(수영용수) 기준을 적용한다.

캐나다는 2012년 "캐나다 위락용수 수질 지침"을 발표하고 공중 보건과 인체 위해성 측면에서 이용객의 안전을 확보하도록 하고 있으며 천수활동과 관련된 모든 위락용수를 지침 적용 대상으로 하고 있다. 타 국가에 비하여 매우 구체적이고 보다 많은 수질 항목을 포함하고 있다.

호주의 경우는 1992년 "호주 담수 및 해수수질지침" 및 2008년 "위락용수 위험 관리 지침"을 통하여 분원성 세균, 사노박테리아 및 조류에 의한 오염에 따라 위락용수 적합성 등급을 제시하고 이에 따라 세 단계의 경보 수준을 제시하고 있다.

<table>
<thead>
<tr>
<th>국가</th>
<th>친수시설 수질 기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>미국</td>
<td>지표</td>
<td>기하평균 (cfu/100mL)</td>
</tr>
<tr>
<td>장구균 (담수, 해수)</td>
<td>권고 1</td>
<td>35</td>
</tr>
<tr>
<td>대장균 (담수)</td>
<td>권고 2</td>
<td>126</td>
</tr>
<tr>
<td>구분</td>
<td>지표</td>
<td>우수</td>
</tr>
<tr>
<td>담수</td>
<td>장구균/100mL</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>대장균/100mL</td>
<td>500</td>
</tr>
<tr>
<td>해수</td>
<td>장구균/100mL</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>대장균/100mL</td>
<td>250</td>
</tr>
<tr>
<td>국가</td>
<td>천수시설 수질 기준</td>
<td>비고</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>-----</td>
</tr>
<tr>
<td>캐나다</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>항목</td>
<td>지침</td>
</tr>
<tr>
<td></td>
<td>대장균 (E.Coli./100mL)</td>
<td>기하평균 200 이하</td>
</tr>
<tr>
<td></td>
<td>장구균 (Enterococci/100mL)</td>
<td>기하평균 35 이하</td>
</tr>
<tr>
<td></td>
<td>시아노박테리아 (Cells/100mL)</td>
<td>총 수 100,000 이하</td>
</tr>
<tr>
<td></td>
<td>시아노박테리아 독소 (μg/L)</td>
<td>총 마이크로시스틴 20 이하</td>
</tr>
<tr>
<td></td>
<td>기타 위험</td>
<td>주혈흡충(가려움증), 수생 유관속 식물, 조류 등 지속 모니터링 후 위험 요소 판단시 활동 금지</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>5.0-9.0</td>
</tr>
<tr>
<td></td>
<td>수온</td>
<td>지나친 채온 상승이나 저하를 아기하지 않을 것</td>
</tr>
<tr>
<td>호주</td>
<td>미생물 종류</td>
<td>최대 허용치</td>
</tr>
<tr>
<td></td>
<td>종속영양세균</td>
<td>100 cfu/100mL</td>
</tr>
<tr>
<td></td>
<td>총 대장균</td>
<td>1 cfu/100mL</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas spp.</td>
<td>1 cfu/100mL</td>
</tr>
<tr>
<td></td>
<td>호온성 아메바</td>
<td>불검출</td>
</tr>
<tr>
<td></td>
<td>호온성 네글레리아</td>
<td>불검출</td>
</tr>
</tbody>
</table>

219) 환경부, 2013, 물놀이형 수경시설의 체계적 관리방안 연구
5-4. 물문화 체험 공간 조성

가. 현황 및 문제점

- ’25년에는 물의 레저로서의 가치가 식수·농업용수·공업용수의 가치정도 수준이 될 것으로 예상되나 이에 대한 준비 부족
- 과거에는 적극적인 개발로 하천의 친수적 의미가 퇴색되었으나 ’90년대 이후 하천복원사업에서 더 나아가 장래에는 하천을 적극적으로 활용할 전망

<table>
<thead>
<tr>
<th>구분</th>
<th>1960∼1980년대</th>
<th>1990년대 이후</th>
<th>~2030까지</th>
</tr>
</thead>
<tbody>
<tr>
<td>시대</td>
<td>산업화, 도시화 압축성장주의, 개발주의</td>
<td>탈 산업화, 정보화, 문화화와 환경의 시대</td>
<td>자식기반 및 네트워크 기반 사회, 고도의 도시화</td>
</tr>
<tr>
<td>이용양상</td>
<td>산업용수, 생활용수, 하천유역 토지개발 및 치수 중심의 획일적 정비</td>
<td>유역과 도시재생, 자연형 하천복원, 생태계, 하천경관</td>
<td>하천입지특성별 가능 구분 심화: 도시형, 농촌형 등</td>
</tr>
<tr>
<td>적극적 개발</td>
<td>재생, 복원</td>
<td>기능과 용도의 부여</td>
<td></td>
</tr>
<tr>
<td>생활문화</td>
<td>친수문화 접착소멸, 개발증상 토건문화, 자동차, 아파트 등 콘크리트인 공문화</td>
<td>시민여가문화의 일상화, 수상레저, 아경감상 등 친수활동 확대, 생태체험문화</td>
<td>도시와 농촌문화의 양극화, 자연향유 욕구의 심화</td>
</tr>
<tr>
<td>패러다임</td>
<td>정복, 파괴, 단절</td>
<td>공존의 재시도</td>
<td>적극적 활용</td>
</tr>
</tbody>
</table>

자료 : 김경남, 2010, 하천정비를 통한 명소형 수변공간 조성 방안 연구, 강원발전연구원

- 특히 국민소득 3만불시대로 진입하여 수상레저, 문화 활동에 대한 수요가 급격히 증가할 것 (220)
- 시민들은 문화/여가시설 미비를 거주지역 하천의 문제점 중 하나로 인식

(220) 세계관광기구(WTO)에 따르면 국민소득 2만 달러 시대에는 골프, 2만5천달러시대에는 승마, 3만달러시대에는 수상레저가 성장하는 레저산업이며, 일본은 3만불, 유럽은 2만불 시대에 요트 등 수상레저가 활성화되었음.
제 2 차 물환경관리 기본계획 보고

제 2 부분
5 대 핵심전략별 주요과제

자료: 한국환경정책평가연구원(2009)

제 5-4-1 거주지역 하천의 문제점에 대한 설문조사 결과

- 4대강 사업의 일환으로 강을 활용하여 새로운 여가공간을 조성하기 위한 사업이 추진되었으나 조성규모에 비해 이용률 낮으며 문화관광 행사 및 프로그램은 주로 일회성 사업으로 끝남 221)

- 하천이 제공하는 어메니티 요소는 삶의 질을 개선시키며 지역발전의 견인수단으로 작용 222)
 - 물(blue space)에 대한 사람들의 선호도 실험결과 223)에 따르면 자연 경관과 인공 경관이 물을 포함하고 있을 때 선호도, 긍정적인 영향, 치유 느낌이 높음

221) 4대강사업조사평가위원회, 2014
222) 하천에서의 어메니티란 하천에서 이수, 치수 가동이 제대로 수행되어 하천의 안정성이 확립된 위에 자연보전기능, 천수기능, 공간기능 등 환경기능이 제대로 수행된 상태로서 인간이 원래의 하천에 손쉽게 접근하고 정서적으로 주변 환경에서 만족감을 느끼는 것
223) 영국 Plymouth 대학의 White 등은 자연 경관과 인공 경관에 대한 사람들의 선호도를 분석하였다. 물(aquatic), 녹지 (green), 인공(built) 환경이 다양한 조합된 120개의 흑백사진에 대한 실험자의 선호도(매력도, 방문 의사, 해당 전망을 가진 호텔의 숙박비 지불 의사), 경관의 영향, 사진이 주는 최복, 치유 느낌을 정량적으로 평가하였다. 실제 예상할 수있듯이 자연 경관과 인공경관이 물을 포함하고 있는 인공 환경은 자연적인 녹색 공간과 비슷하게 평가 될 정도로 물에 대한 사람들이 선호도가 상당한 것으로 평가를 포함하고 있을 때 선호도, 긍정적인 영향, 치유 느낌이 높음으로 나타났다. 또한 물을 포함하고 있는 인공 환경은 자연적인 녹색 공간과 비슷하게 평가될 정도로 물에 대한 사람들이 선호도가 상당한 것으로 평가되었다. 이러한 결과는 물의 푸른색과 수면에 빛이 반사되면서 보여주는 시각적인 효과, 파도가 치거나 물이 흐르는 소리인 청각적 효과, 그리고 몸을 펴거나 수영하면서 몸에 잡겨 있을 때 느끼는 편안한 감정 등에 의한 것으로 추정(White 외, 2010)
표 5-4-2 4대강 문화관광레저 시설 및 행사 개요

<table>
<thead>
<tr>
<th>시설유형</th>
<th>개요</th>
</tr>
</thead>
<tbody>
<tr>
<td>자전거길</td>
<td>총 1,767km</td>
</tr>
<tr>
<td>수변공원 (생태공원, 문화광장, 피크닉장, 다목적광장 등)</td>
<td>총 234개 수변공원</td>
</tr>
<tr>
<td></td>
<td>(한강 66개, 금강 41개, 영산강 32개, 낙동강 95개)</td>
</tr>
<tr>
<td>생활체육시설</td>
<td>총 61개 생활체육시설지구, 총 641면</td>
</tr>
<tr>
<td></td>
<td>(축구장 116면, 야구장 84면84면, 농구장 84면, 농구장 87면, 축구장 112 면, 베테인턴장 51면, 게이트볼장 45면, 인라인장 20면, 테니스장 70면, 배구장 14면, 다목적구장 28면, 풋살장 14면)</td>
</tr>
<tr>
<td>강문화관</td>
<td>총 5개 문화관(한강, 금강, 영산강, 낙동강, 디아크)</td>
</tr>
<tr>
<td>보사업소 홍보관</td>
<td>12개 홍보관</td>
</tr>
<tr>
<td>강변캠프장</td>
<td>총 11개소(한강 2개, 금강 3개, 영산강 1개, 낙동강 5개)</td>
</tr>
<tr>
<td>나루터 및 마리나</td>
<td>총 58개(한강 9개, 금강 14개, 영산강 17개, 낙동강 18개)</td>
</tr>
<tr>
<td>문화관광 행사 및 프로그램</td>
<td>강변 10대 명품 문화상품 개발, 강변 대표축제 발굴 및 개최, 강변 문화 토크faq, 강변 문화 사진 출판, 강변 문화장터 조성 실시사업 등</td>
</tr>
</tbody>
</table>

자료 : 4대강사업조사평가위원회, 2014, 4대강 조사평가 보고서

- 관광객 유입 증가로 관광경제가 활성화 되며 일자리가 창출됨
- 이러한 긍정적 효과를 극대화할 수 있는 하천 중심의 복합문화여가공간 형성 필요

자연 경관 **문화 체험** **수상 레저** **물 교육** **에코도시하천 조성**
일자리 창출 **삼의 질 개선** **관광경제 활성화** **물환경 인식개선**

〈그림 5-4-2〉에코도시하천을 통한 기대효과
나. 주요대책

- 에코도시하천을 통한 생태 도시(에코폴리스) 조성
- 에코도시하천을 활용한 다양한 콘텐츠 개발
- 도시하천과 수변공간 접근의 형평성 제고

- 에코도시하천을 통한 생태 도시(에코폴리스) 조성

 - 에코도시하천 조성 대상 지역 조사·발굴 및 시범모델 제시
 - 인문·예술·생태가 이루어진 에코하천을 지역의 랜드마크로 조성하여 수변 생태벨트와 배후도시까지 생태관광할 수 있는 프로그램을 개발하여 건강한 수생태계와 지역 경제활성화가 융합될 수 있는 시범모델제시
 - 에코도시하천 조성에 따른 사회·경제적 효과 분석 수반

 - 에코도시하천 조성 대상 선정 지역의 생태도시 조성 계획 수립 및 추진
 - 에코도시하천 활용 유형 및 조성 방향 결정
 - 지역의 특성, 수변자원의 유형, 시민의 가치관, 소비행태, 여가활동유형, 주변 자원(문화·역사·자연) 간 관계, 수요자·이용자 중심의 활용성 등 고려
 - 친환경적 개발이 가능하도록 지자체와 협업 추진
 - 에코도시하천을 지역의 랜드마크로 조성하기 위한 시설 설치 계획
 - 기존의 관광코스와 연계된 자전거길, 테마공원 등의 문화여가 시설
 - 물 박물관, 생명습지, 생태체험관 등의 물관련 교육·홍보를 위한 시설
 - 토지 매수 추진방안, 지역주민 의견수렴 방안 마련

- 에코도시하천을 활용한 다양한 콘텐츠 개발

 - 에코도시하천에서 즐길수 있는 문화여가콘텐츠 개발
 - 수상스포츠 체험, 역사문화유적 탐방, 리버크루즈 여행 등
물 중심의 테마가 있는 탐방·체험프로그램 개발·운영
- 생태도시 조성 시 물관련 교육·홍보를 위한 시설 (예: 물 박물관, 생태체험관 등) 계획
- 기존시설, 수변생태벨트, 배후 생태도시를 연결하는 탐방·체험 프로그램 개발 및 지속운영

물 박물관 탐방

취정수장 등 탐방

전·핑수장 등 탐방

수상스포츠

리버크루즈 여행

스토리텔링 체험

야외캠핑장

《그림 5-4-3》 에코도시하천 활용 컨텐츠

도시하천과 수변공간 접근의 형평성 제고
- 도시하천과 수변공간에 대한 접근성을 향상시키는 노령화 시대에 노인들이 쉽게 하천에 접근하여 여가를 즐길 수 있도록 하고, 장애인 등 사회적 약자가 하천의 수변공간에 접근할 수 있도록 여건을 개선
- 이를 위해 국토교통부의 하천과 도시계획 관련 법제에서의 환경정의 및 복지 측면에서의 미흡한 부분을 보완, 조정할 수 있도록 정책 마련
다. 향후 추진 일정

- 에코도시하천을 통한 생태 도시(에코폴리스) 조성
 - 에코도시하천 조성 대상 지역 조사·발굴 및 선정
 - 에코도시하천대상 선정 지역의 생태도시 조성 계획 수립 및 추진

- 에코도시하천을 활용한 다양한 콘텐츠 개발

국외 사례 5-4-1

- 캐나다 토론토 시의 ‘Waterfront Toronto’ 프로젝트의 경제적 효과

 - 캐나다 토론토 시는 2001년부터 2009년 3월까지 공공기관을 통해 온타리오 호 주변에 친수구역을 조성하는 ‘Waterfront Toronto’ 사업에 6.4억불 투자
 - 89%의 지출이 토론토 내에서 이루어졌으며, 온타리오 주 안에서 행해진 지출은 95%에 달함
 - 2001년부터 2009년까지의 직접 투자를 통해 약 8,400개의 전일제 일자리를 만들어냈고 이중 70%가 토론토 시에서 만들어짐
 - 대부분의 일자리는 건설, 전문가(professional), 금융, 보험, 부동산, 임대차(leasing), 과학, 기술 서비스 부분에서 만들어졌으며 이들 작업자들은 전문성이 높고 가치 있는 일자리
 - 과학,기술 서비스 부문은 대부분 설계, 공학, 환경 서비스와 관련된 것으로 토론토 시와 주 정부가 경제개발 목표로 삼은 산업이었다.
 - 프로젝트는 캐나다 경제에 16억 불의 경제 총 산출효과를 가져왔으며, 대부분의 경제성장은 토론토 시에서 이루어짐
 - 이 외에도 Waterfront Toronto 프로젝트는 주거,상업,문화,언터테인먼트 지역의 발전으로 영구적인 일자리의 창출, 재산세 증가, 소득세 증가, 관광 수입 증가 등의 효과를 가져왔으며, 이는 이 사업에 의한 초기의 직접 투자가 없었다면 발생하지 않았을 경제적 효과
 - 이러한 정량적인 편익 외에도 Waterfront Toronto 프로젝트를 통해 무형의 효과도 함께 나타남
 - 관광, 비즈니스 분야에서 토론토, 온타리오, 캐나다의 위상이 높아졌으며, 토론토 친수구역이 세계적인 명성을 얻게 되었고 그 후로 민간 부분의 건설 및 사업 투자 분야에 많은 투자를 가져옴

224) WATERFRONToronto, 2009
기반 및 역량 강화 전략

1. 거버넌스 활성화

<table>
<thead>
<tr>
<th>종전 대책</th>
<th>2025 계획</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 지역단위 자율 프로그램 개발·보급</td>
<td>• 수계위 중심의 유역거버넌스 강화 및</td>
</tr>
<tr>
<td>• 다양한 물환경 교육·홍보 프로그램 개발</td>
<td>민간분야 참여 확대</td>
</tr>
<tr>
<td>• 환경인프라 중심으로 도농간 불평등 해결</td>
<td>• 교육·홍보 프로그램과 민간부문 물관리</td>
</tr>
<tr>
<td></td>
<td>역량 강화 연계</td>
</tr>
<tr>
<td></td>
<td>• 지역 특성에 따른 맞춤형 해결방안 마련</td>
</tr>
</tbody>
</table>

1-1. 상하류 공영 유역 거버넌스 확립

가. 현황 및 문제점

하천의 유역범위는 지방자치단체의 행정구역과 일치하지 않는 경우가 많아
현재의 대권역별 수계관리위원회를 개설·보완하고, 이를 중심으로 상·하류
공영 유역거버넌스 체계를 확립할 필요
- 낙동강의 경우도 6개의 광역자치단체를 관통하고 있음
수계관리위원회는 4대강 수계법에 의해 한강, 낙동강, 금강, 영산강, 섬진강 수계에 설치되어 있으며, 수질개선과 수변구역 관리, 물이용부담금의 부과징수를 중심으로 운영되고 있음

수계관리위원회가 상하류 공영 유역관리 거버넌스의 중심이 되기 위해서는 법적근거, 역할, 조직 등의 개선이 필요

현행 수계관리위원회는 한정된 주체, 즉 국가 및 지방행정 중심의 관리 체제로 한계 존재

수계관리위원회 내에 지역주민, 기업 등 다양한 이해관계자를 참여를 보장하거나 수계관리위원회 전하의 자문위원회의 의사결정 영향권을 강화하여 진정한 의미의 물 거버넌스의 효율성을 증진 필요(※ 참고자료 1-1-1 : 수계위 자문위 현황)

기타수계는 수계관리위원회가 존재하지 않기 때문에, 향후 이를 중심으로 유역거버넌스를 운영하기 위해서는 기타수계에도 수계관리위원회 설치 필요

물이용부담금 제도를 통한 수계관리기금 운용되어 있으나, 제도 시행 15년이 경과하면서 기존 기금 운용 시스템에 대한 문제점이 지속적으로 제기

관리대상 오염원의 변화, 지역특성에 적합한 관리방식, 수질오염총량제 시행 등 물관리 여건이 변화하면서 기금지원 수요도 변화

이로 인해 기금운영방식이나 세부사업내용에 대한 상하류지역의 이해 당사자 간에 갈등이 심화되고 있는 추세

수계관리위원회내 민간이 포함되어 있는 자문위원회가 존재하나 자문회의가 형식적으로 이루어지고 있어, 자문의견 실효성 확보 필요

225) 「한강수계 상수원수질개선 및 주민지원 등에 관한 법률」제24조, 「금강수계 물관리 및 주민지원 등에 관한 법률」제35조, 「낙동강수계 물관리 및 주민지원 등에 관한 법률」제37조, 「영산강·섬진강수계 물관리 및 주민지원 등에 관한 법률」제35조

226) 수계관리기금으로 조성되는 물이용부담금 제도는 물을 이용하는 시민들이 상수원 보호를 위해 규제를 받고 있는 주민들의 지원과 보상, 수질개선에 필요한 재원을 확보하기 위해 부담하는 상생의 정신에 기초하는 제도로써 국제적으로 널리 받아들인 선진적인 유역관리체제로
나. 주요대책

- 수계관리위원회 운영체계 개선
- 수계관리위원회 내 거버넌스 강화
- 수계관리기금 역할 확대

▲ 수계관리위원회 운영체계 개선
 - (기타수계) 기타수계 수계관리위원회 조직 집토
 - 4대강 수계 이외의 기타수계까지 수계관리위원회가 조직될 수 있도록 수질 법에 법적근거를 마련 필요성 검토
 - (수계위 위인 확대) 수계관리위원회의 위인 구성에 물관련 중앙행정기관, 「소유역환경센터」센터장 등을 추가하여 조직을 확장하며, 확장된 역할을 행정적으로 지원할 수 있는 실무위원회, 자문위원회, 사무국의 역할을 보강

▲ 수계관리위원회 내 거버넌스 강화
 - 현행 수계 수질관리 및 기금운용 역할을 확대하여 유역계획의 수립, 이행 및 평가, 갈등조정 등 유역관리 전반에 걸쳐 중앙정부, 지방자치단체, 민간 단체, 지역주민 등 이해관계자의 의견을 수렴하고 수계위 산하의 자문위원회 의사결정 영향권 강화
 - (자문안건 확대) 신규사업, 기금운용계획 결산보고서 등을 안건에 포함
 - 신규사업이 상하류 지자체간의 이해관계가, 정치적 이유 등으로 충분한 논의 없이 기금운용계획에 반영되는 것을 미연에 방지
 - 실질적으로 지역민과 수질개선에 도움이 되는 사업이 발굴되고 추진될 수 있도록 논의체계를 다변화
 - (자문의견 실효성 확보) 자문위 논의결과에 대한 수계위 논의 의무화
 - 자문위원장이 수계위에 참석하여 자문위원회 회의결과를 보고하고 수계 위원장은 자문의견이 수계위에서 충분히 논의되도록 운영
- 자문위원장은 자문위원에게 수계위 논의결과 통보 및 지속적인 관심 유도

- (자문위원 다변화) 자문위원의 환경행정 전문가가 참여하도록 하여 자문의견의 질적 수준 향상
- 환경행정 경험이 많은 전문가(수계위 위원장 추천)를 자문위원에 포함하여, 현실적으로 적용가능한 자문의견이 도출되도록 자문위원 구성
- 자문위원장은 일부 지역, 일부 업계 등의 이익을 대변하는 소수의 의견은 배제되도록 자문위를 운영, 자문위 전체가 동의하는 자문의견만을 수계 위에 상정

- (기타) 참석실적이 미흡한 자문위원은 유임대상 제외, 분과위원회 설치 등

수계관리기금 역할 확대

- 주민지원사업 합리적 개선
 - (자원규모 객관화) 규모로 인한 피해에 대한 경제적 평가 등 주민지원사업의 규모 산정을 위한 객관적 자료 확보 필요
 • 재산평가액, 연간 예상수익과 누적지원액 등을 종합적으로 고려
 • 사업비 배분액 산정 시 인구감소 추세를 반영하여 인구수 대비 면적분 반영 비율을 점차 확대(50→60→70%)하는 방안 검토
 - (지원사업 다양화) 간접지원사업 내실화를 위해 타부처 지원사업 정보교류 및 아이템 개발을 위한 연구용역 실시 검토
 • 기계적으로 배분되는 일반(간접)지원비 비중을 축소하고, 지역 특색에 맞는 우수사업을 발굴·지원하는 특별지원사업 비중 확대(20→30%) 검토

수계관리기금 사용내역 정보공개로 기금운용 투명성 제고

- 기금 운용계획과 집행결과에 대한 결산보고서, 기금사용을 위해 수계관리 위원회에서 논의한 회의자료 등 주요 자료에 대한 정보공개 방안 마련
- 지자체 및 지역 주민들의 유역관리에 대한 이해도를 높이기 위해 4대강 수계별로 물이용부담금 벤처 제작·발간
주요 경관리 본계획부록

물이용부담금 부과대상의 합리적 조정 검토
- 그간 물이용부담금이 면제되었던 상류지역 산단 및 공장 등에 대해 사용자 부담원칙에 따라 부담금을 부과하여 부과형평성 및 수입구조 안정성 제고 측면 고려

다. 향후 추진 일정

- 4대강 수계위 논의체제 및 거버넌스 개선(‘17∼’25)
- 주민지원사업 합리적 개선(‘17∼’25)
- 수계관리기금 운용 투명성 제고 방안 마련(‘16∼’25)
- 물이용부담금 부과대상 조정 마련 추진(‘16∼’25)

참고자료 1-1-1

리

수계위 자문위 현황
○ (목적) 수계위의 협의조정 업무 추진에 필요한 전문적인 사항 자문
○ (구성) 수계위에 참여하는 지자체장이 추천하는 주민대표·시민사회대표·산업계 대표·환경전문가 각 1인으로 구성(18∼24명 규모)
* 한강수계위 자문위에는 수계위 위원장이 위촉하는 환경전문가, 영산강수계위 자문위에는 수변구역이 10㎢ 이상 지정된 시군의 주민대표가 추가로 포함
- 위원장은 위원중 호선(互選)하며 위원의 임기는 2년(1회 연임 가능)
○ (역할) 수계관리기금운용계획물이용부담금 부과에 관한 사항 및 위원회 회원이 인정하는 사항에 대하여 자문

물이용부담금 부과대상의 합리적 조정 검토
- 그간 물이용부담금이 면제되었던 상류지역 산단 및 공장 등에 대해 사용자 부담원칙에 따라 부담금을 부과하여 부과형평성 및 수입구조 안정성 제고 측면 고려

다. 향후 추진 일정

- 4대강 수계위 논의체제 및 거버넌스 개선(‘17∼’25)
- 주민지원사업 합리적 개선(‘17∼’25)
- 수계관리기금 운용 투명성 제고 방안 마련(‘16∼’25)
- 물이용부담금 부과대상 조정 마련 추진(‘16∼’25)

참고자료 1-1-1

리

수계위 자문위 현황
○ (목적) 수계위의 협의조정 업무 추진에 필요한 전문적인 사항 자문
○ (구성) 수계위에 참여하는 지자체장이 추천하는 주민대표·시민사회대표·산업계 대표·환경전문가 각 1인으로 구성(18∼24명 규모)
* 한강수계위 자문위에는 수계위 위원장이 위촉하는 환경전문가, 영산강수계위 자문위에는 수변구역이 10㎢ 이상 지정된 시군의 주민대표가 추가로 포함
- 위원장은 위원중 호선(互選)하며 위원의 임기는 2년(1회 연임 가능)
○ (역할) 수계관리기금운용계획물이용부담금 부과에 관한 사항 및 위원회 회원이 인정하는 사항에 대하여 자문
França

- 예산계획의 수립과 정책, 사업의 집행기능이 명확하게 분리 독립되어 운영
- 유역관리위원회와 유역관리청이 독립적으로 구성되어 있으며 유역관리위원회가 의회의 역할을 담당하고 유역관리청은 행정기관의 역할을 담당

<table>
<thead>
<tr>
<th>프랑스의 유역관리기구 사례</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>명 칭</th>
<th>위원수</th>
<th>주요 역할</th>
</tr>
</thead>
<tbody>
<tr>
<td>유역관리위원회</td>
<td>총 위원수 70명</td>
<td>- 물감시 조정
- 유역관리청의 연간업무계획 수립
- 물관리계획 수립 및 개발
- 정부의 주요 물 정책 건의 및 총고
- 유역관리청과 관련된 현안사항 자문</td>
</tr>
<tr>
<td></td>
<td>- 국가대표 : 15
- 지역사회utra문가 : 3
- 사용자 대표 : 3
- 전문가 : 2
- 도시사회대표 : 26</td>
<td></td>
</tr>
</tbody>
</table>

유역관리청

- 6개 유역 총 직원수 1,200명 정도

- 수자원 개발을 위한 모든 사업계획서 작성
- 수질오염방지를 위한 재정적, 기술적 지원
- 재정지원을 위한 재원 조달(취수세,오염세)
- 수질개선을 위한 재정 지원 및 투자
- 물사용과 배출부과금 관련 요금
- 지표수, 지하수 수질 및 수량 모니터링
- 관리와 보호 계획에 대한 제반사항
- 행정심의회의 결정 수행

자료: 송미영 등, 2013, 한강수계기금 운영 합리화를 위한 제도개선방안, 경기개발연구원

- 유역관리위원회는 각 지방자치단체에서 선출된 대표와 중앙정부, 사용자 대표 등으로 구성되고 각 부분의 대표자 수는 동수로 구성
- 유역관리위원회 산하에 유역기금을 관리하는 유역관리청이 있으며 유역관리청은 중앙정부의 예산지원 없이 취수세와 오염세로 사업예산을 충당함

캐나다

- 캐나다의 GRCA(Grand River Conservation Authority)는 운영의 기본원칙으로 변화를 반영하고 혁신적이며 실현 가능하고 재정적으로 지속 가능한 조직으로 자리매김하는 것이라고 함
- 이러한 GRC 유역위원회는 지역관리책임자가 대표를 맡고 행정업무와 재정업무를 담당하며, 별도의 감사위원회로 구성운영하고 있음
• 호주
 ○ 무레이 다탕 유역의 경우에는 1985년 유역관리위원회를 만들어 토지, 물, 환경자원의 이용에 대한 통합적인 계획과 관리를 시작하고 있으며 유역 내 지역사회의 의견을 수렴하기 위한 지역사회자문위원회(CAC, Community Advisory Committee)를 조직하여 운영
 - 자문위원회는 유역 전체의 다양한 지역사회를 대표하면서 공동관심사를 도출하기 위해 노력하고 있음
 - 이는 한강수계의 특별대책지역 수질보전정책협의회와 일부 유사한 측면이 있음

• 미국
 ○ 포토맥강의 유역관리위원회(ICPRB, Interstate Commission on Potomac River Basin)는 1940년 이후 지속적인 수정을 통한 협약을 보완하여 비용 분담 기준이나 가중치 등을 변경함으로 오고 있음
 ○ 특히 각 주의 재정분담은 동등하게 설정하고 유역 여건이 변화함에 따라 가중치를 반영하여 비용분담을 시행
 ○ 최근에는 유역관리 예산이 많이 필요한 주에 대해서는 추가 비용을 더 부담하는 체계로 조정하기도 하였는데 이때 기준은 인구, 연안면적, 연안 물 면적, 점오염원 비율 등이 활용되었으며 이들의 비중에 따른 가중치를 변경하고 재정 분담을 합리화 하였음
1-2. 이해당사자 및 기업·학계와의 협력 강화

가. 현황 및 문제점

유역관리는 대권역 뿐 아니라 지류·지천·호수 등 소권역 단위의 관리에도 필요하며 소유역 단위 거버넌스는 참여자의 역량에 따라 성패가 좌우

- ’11년 감사원 보고서227)에 따르면 한강 소권역 계획 수립 여부에 따라 수질개선 효율 차이가 난
 • 소권역 계획이 수립되지 않은 경안천 등 6개의 하천의 경우 수질개선 효과가 미미한 것으로 확인

자료: 감사원, 2011, 수도권 수질오염원 관리 실태 (그림 1-2-1) 소권역계획 수립 및 미수립 하천의 수질 비교

소유역 수준에서 거버넌스의 성공은 참여자의 물환경 관리 및 재정 역량과 승패를 같이 하므로 지역 내 역량강화를 위해 전략이 필요

- 98개의 오염지류(’14년, 나쁨등급 이상) 전체에 대해 지자체 중심의 소권역 계획 수립은 전문인력부족, 예산부족, 업무 협조 미비 등의 어려움

(※ 참고자료 1-2-1: 권역별 오염지류 목록)

227) 출처 : 수도권 수질오염원 관리 실태(‘11.7), 감사원
전 공무원을 대상으로 물환경 관리 정책 관련 교육과정 실시 중이나 지자체
실태조사 및 지역주민에 대한 물환경 관리 정책 교육-홍보 미비
- ’15년 공무원의 역량 강화를 위하여 분야별 전문교육을 실시하고 있으며
물환경 분야 4개 과정, 상하수도 분야 3개 과정 운영 중(※ 참고자료 1-2-2:
국립환경인력개발원의 공무원대상 물환경정책수강수도분야 교육과정)
- 기존 정책의 변경 사항과 신규 정책에 대해 지자체 실무자와 해당 정책
이해대상자를 대상으로 교육-홍보 필요

'90년대 이후 하천을 대상으로 하는 지역주민 참여가 활발히 이루어졌으나228) 대부분 하천의 환경개선과 관련된 참여운동 중심으로 이루어져왔고 소권역
계획 수립 및 시행에 대한 참여는 거의 전무229)
- 「중권역 물환경관리계획 수립·시행 지침」230)에서는 중권역협의회에 시민
단체 및 주민대표 등을 포함하여 협의회 구성하여 중권역 계획의 수립·
이행 및 평가에 민간참여를 독려하나 소권역 계획은 해당사항이 없음

228) 국내의 하천관련 NGO 네트워크로는 강살리기 네트워크, 한강 지속가능 발전협의회, 부산 하천살리기 시민연대 등
이 있고 민관협력기구로는 인천광역시 하천살리기 추진단, 부산 하천살리기 추진단, 수원시 하천살리기 시민네트워크 등이 있다.

229) 대표적인 주민참여 유역관리의 주체들(김해시 수질개선협의회, 대청호 보전운동본부, 전주생태하천협의회 등)의
주요 활동을 분석한 결과

230) 정부 주도의 물환경개선대책에서 벗어나 주민이 자발적으로 물환경개선에 적극 나설 수 있도록 민간 참여 원칙에
따라 추진된 민관 협동으로 계획 수립·이행 및 평가 추진
나. 주요대책

- 소유역환경센터를 설치 및 이를 중심으로 소유역계획 수립
- 소유역 거버넌스 역량강화를 위해 기업·학계와의 협력체계 구축
- 소유역 물환경 역량 증진을 위한 맞춤형 교육·홍보 방안 개발

- 소유역환경센터를 설치 및 이를 중심으로 소유역계획 수립
 - 유역관리는 대권역 중심 관리 외에도 특정 지류·지천·호소의 물환경 개선을 목적으로 하는 소권역 단위 관리도 필요하기 때문에, 이를 위해 해당 유역에 「소유역환경센터」를 설치하여 이를 중심으로 소유역 계획수립부터 사업실행까지 소권역 수준의 거버넌스 체계를 확립
 - 「소유역환경센터」를 중심의 효율적인 거버넌스 구축
 - 지방자치단체, 유역(지방)환경청 사무국, 전문가, 사업자, 시민단체, 지역 주민 등으로 문제 맞춤형 협의체를 구성
 - 지역특성을 반영하여 소유역 영향평가, 계획수립부터 사업시행까지 단계별 적절한 참여그룹을 설정·참여를 제도화
 - 「소권역 물환경관리계획 수립·시행 지침」 수립 방법화
 - 소권역협의회의의 위원 구성 및 운영, 협의회 내에 지역주민, 유역주민, 민간 단체, 지역전문가의 참여보장
 - 적극적이고 실질적인 주민참여를 유도하기 위해 공동의사결정 방식을 반영한 제도적 장치 마련
 - 소권역 유역계획 의사결정에서 절차적 합리성 제고 방안 마련
 - 중점관리 오염지류 대상에 대한 소권역 계획 수립 또는 지류총량제 수립 시 주민 검토 제도화
 - 총량관리 대상물질 및 관리 필요성 여부에 대해서는 유역구성원이 의사를 결정하도록 하여 보다 선진적인 유역관리체계를 구축
소유역 거버넌스 역량강화를 위해 기업·학계와의 협력체계 구축

- 지역 내 역량강화를 위해 환경부는 지자체·교육부와 협력하여 「소유역환경센터」를 지역 내 물환경 관련 대학이나 연구소에 설치·지원
- 지역 대학이나 연구소들의 인적·물적 인프라를 활용하여 지자체 공무원, 산업체, 학생을 포함한 지역주민들을 교육
- 장기적으로 이들이 다시 「소유역환경센터」, 지자체 또는 관련 물관리 기관에 우선적으로 채용될 수 있는 기회를 주어 미래의 지역 물환경리더를 양산하며 지역적 물환경관리 역량을 강화하는 선순환 흐름 구축
- 또한 대학 및 대학원에서 방사성 및 미량화학물질 등 측정분석사, 하·폐수 고도처리장 운영 전문가를 육성
- 정부에서는 관련 자격증제도를 개발하여 관련기업에 취업을 보장하는 전주기 교육제도 마련으로 학계와 거버넌스 강화

(물산업협의체) 지역관리의 재정적 역량강화를 위해 지역의 물산업협의체를 구성하여 지역환경현안 공동펀드 조성
- 민-관-기업이 협동하여 지역 물환경 개선사업을 추진하며, 환경-경제 분야 협의체를 구성하여 상시 현안별 의견을 조율하는 기업간의 거버넌스를 강화

- 「소유역환경센터」는 많은 지역주민의 참여가 필요한 비점오염원 또는 물 순환 관리 등 물환경 문제해결을 위해 지역주민과 협력하여 직접 사업수행
- 지속가능한 센터운영의 재정지원을 마련하고, 동시에 지역의 물환경 관리에 공헌

소유역 물환경 역량 증진을 위한 맞춤형 교육·홍보 방안 개발

- 일반인 생애주기(유아, 초·중·고등학생, 대학생, 군인, 주부, 노인 등)에 맞는 교육·홍보 콘텐츠 개발
- 물 관련 주요 현안 및 물의 인문, 사회적 측면과 자연과학적 측면을 포함하는 폭넓은 교육내용 개발
- 물관리시설/구역 탐방, 벽화 그리기 등의 문화활동과 연계한 체험중심의 물문화 교육 콘텐츠 개발
- 지역사회 물환경 리더발굴 및 양성 프로그램 개발·운영

이해당사자, 실무담당 공무원에 맞는 교육홍보 콘텐츠 개발
- 교육·홍보가 필요한 기존 정책의 변동사항 및 신규 정책 발굴

표 1-2-2 물환경정책 교육·홍보 내용 및 대상, 기간

<table>
<thead>
<tr>
<th>구분</th>
<th>정책 내용</th>
<th>대상자</th>
<th>기간</th>
</tr>
</thead>
<tbody>
<tr>
<td>유역 통합 관리</td>
<td>강우유출수 요금제</td>
<td>- 신규개발사업 및 기존 토지 이용·사용자 - 실무담당 공무원</td>
<td>중기</td>
</tr>
<tr>
<td></td>
<td>교차준수제</td>
<td>- 농축산업 종사자 - 실무담당 공무원</td>
<td>중기</td>
</tr>
<tr>
<td></td>
<td>LID/GSI 시설 성능검사제</td>
<td>- 실무담당 공무원</td>
<td>단기</td>
</tr>
<tr>
<td></td>
<td>LID/GSI 시설 유지관리 대행업제도</td>
<td>- LID/GSI 시설 유지관리 전문가 - 실무담당 공무원</td>
<td>단기</td>
</tr>
<tr>
<td></td>
<td>토양 영양물질 총량제</td>
<td>- 농축산업 종사자 - 실무담당 공무원</td>
<td>단기</td>
</tr>
<tr>
<td></td>
<td>가축분뇨 배출시설 및 처리시설기준</td>
<td>- 농축산업 종사자 - 실무담당 공무원</td>
<td>중기</td>
</tr>
<tr>
<td></td>
<td>지류총량제</td>
<td>- 특정 현안 지류 주변 지역 주민 - 실무담당 공무원</td>
<td>중기</td>
</tr>
<tr>
<td>건강한 생태계 조성</td>
<td>수생태계 건강성 달성 목표기준 및 평가기준</td>
<td>- 일반인 - 실무담당 공무원</td>
<td>단기</td>
</tr>
<tr>
<td></td>
<td>하천보호구역 지정제도</td>
<td>- 지역주민 - 실무담당 공무원</td>
<td>중기</td>
</tr>
<tr>
<td></td>
<td>생태하천복원사업</td>
<td>- 지역주민 - 실무담당 공무원</td>
<td>단기</td>
</tr>
<tr>
<td></td>
<td>생물종위기종 서식지 보호구역 지정·보전</td>
<td>- 지역주민 - 실무담당 공무원</td>
<td>지속</td>
</tr>
<tr>
<td></td>
<td>환경생태유량</td>
<td>- 실무담당 공무원</td>
<td>중기</td>
</tr>
<tr>
<td>안전한 물환경 조성</td>
<td>조류경보제, 친수경보제</td>
<td>- 일반인</td>
<td>지속</td>
</tr>
<tr>
<td></td>
<td>유해물질 검증식 허가제도</td>
<td>- 사업장 관리자 - 실무담당 공무원</td>
<td>단기</td>
</tr>
<tr>
<td></td>
<td>미량화학물질 측정분석</td>
<td>- 환경 분야 종사자</td>
<td>단기</td>
</tr>
<tr>
<td></td>
<td>친수수경사설 통합관리</td>
<td>- 실무담당 공무원</td>
<td>단기</td>
</tr>
<tr>
<td>구분</td>
<td>정책 내용</td>
<td>대상자</td>
<td>기간</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>물환경 경제문화적 잠재력 극대화</td>
<td>입지규제</td>
<td>입지규제 대상지역 사업자 및 주민, 실무담당 공무원</td>
<td>단기</td>
</tr>
<tr>
<td></td>
<td>환경기초시설 자산관리제도</td>
<td>환경기초시설 관련 담당자, 실무담당 공무원</td>
<td>단기</td>
</tr>
<tr>
<td></td>
<td>환경산업수출지원정책</td>
<td>민간 환경 기업 담당자, 실무담당 공무원</td>
<td>지속</td>
</tr>
<tr>
<td></td>
<td>에코도시하천조성</td>
<td>해당지역 주민, 실무담당 공무원</td>
<td>중기</td>
</tr>
<tr>
<td>지역기반인 간주도 물환경관리</td>
<td>소관역 계획 수립</td>
<td>지역 주민, 시민단체 등 이해당사자</td>
<td>지속</td>
</tr>
<tr>
<td></td>
<td>e-거버넌스</td>
<td>일반인이, 실무담당 공무원</td>
<td>지속</td>
</tr>
<tr>
<td>과학 및 기술 활용한 물환경관리 기반 강화</td>
<td>측정기술 고도화</td>
<td>환경 분야 종사자</td>
<td>단기</td>
</tr>
<tr>
<td></td>
<td>물관리 통합정보시스템</td>
<td>환경 분야 종사자, 실무담당 공무원</td>
<td>지속</td>
</tr>
<tr>
<td></td>
<td>물환경관리 의사결정지원시스템</td>
<td>일반인이, 실무담당 공무원</td>
<td>지속</td>
</tr>
<tr>
<td>효율적 재정관리</td>
<td>하수도요금</td>
<td>일반인이, 실무담당공무원</td>
<td>지속</td>
</tr>
<tr>
<td></td>
<td>수계관리기금 정보공개</td>
<td>지역주민, 실무담당 공무원</td>
<td>지속</td>
</tr>
</tbody>
</table>

다. 향후 추진 일정

- 물환경 거버넌스 실태 및 현황 파악(~’17)
- 물환경 거버넌스 법적 근거 마련(~’18) 및 제도화(~’20)
- 소유역환경센터 시범수립(~’20) 및 확대(~’25)
- 물환경에 대한 교육·홍보 운영 기반 확립(~’18)
- 물환경 교육 전문인력 양성 프로그램 마련 및 운영(계속)
<table>
<thead>
<tr>
<th>구분</th>
<th>대권역</th>
<th>중권역</th>
<th>측정소명</th>
<th>BOD</th>
<th>COD</th>
<th>T-N</th>
<th>T-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>한강</td>
<td>한강서해</td>
<td>C가좌천</td>
<td>178</td>
<td>114</td>
<td>74.899</td>
<td>4.260</td>
</tr>
<tr>
<td>2</td>
<td>한강</td>
<td>시화호</td>
<td>C원정리수로</td>
<td>121</td>
<td>88.4</td>
<td>5.123</td>
<td>0.581</td>
</tr>
<tr>
<td>3</td>
<td>낙동강</td>
<td>낙동강하구언</td>
<td>덕천천</td>
<td>40.5</td>
<td>21.4</td>
<td>15.298</td>
<td>1.373</td>
</tr>
<tr>
<td>4</td>
<td>한강</td>
<td>한탄강</td>
<td>C신천-1</td>
<td>31.8</td>
<td>42.1</td>
<td>16.242</td>
<td>0.844</td>
</tr>
<tr>
<td>5</td>
<td>한강</td>
<td>시화호</td>
<td>C목구천</td>
<td>30.2</td>
<td>27.3</td>
<td>6.641</td>
<td>0.401</td>
</tr>
<tr>
<td>6</td>
<td>한강</td>
<td>시화호</td>
<td>C제4간선수로</td>
<td>28.7</td>
<td>19.4</td>
<td>5.943</td>
<td>0.458</td>
</tr>
<tr>
<td>7</td>
<td>낙동강</td>
<td>수영강</td>
<td>C장림유수지</td>
<td>19.5</td>
<td>17.6</td>
<td>7.551</td>
<td>0.654</td>
</tr>
<tr>
<td>8</td>
<td>한강</td>
<td>시화호</td>
<td>C군자천</td>
<td>18.2</td>
<td>18.8</td>
<td>5.817</td>
<td>0.422</td>
</tr>
<tr>
<td>9</td>
<td>금강</td>
<td>민경강</td>
<td>C비응도동수로</td>
<td>17.9</td>
<td>34.2</td>
<td>3.078</td>
<td>0.300</td>
</tr>
<tr>
<td>10</td>
<td>한강</td>
<td>시화호</td>
<td>C신길천</td>
<td>16.9</td>
<td>22.3</td>
<td>9.446</td>
<td>0.507</td>
</tr>
<tr>
<td>11</td>
<td>한강</td>
<td>한탄강</td>
<td>C신천-2</td>
<td>15.5</td>
<td>24.2</td>
<td>11.722</td>
<td>0.256</td>
</tr>
<tr>
<td>23</td>
<td>금강</td>
<td>삼교천</td>
<td>C천안천</td>
<td>15.1</td>
<td>12.5</td>
<td>10.481</td>
<td>0.617</td>
</tr>
<tr>
<td>12</td>
<td>낙동강</td>
<td>최야강</td>
<td>C매암동수로</td>
<td>15.1</td>
<td>23.6</td>
<td>14.152</td>
<td>0.435</td>
</tr>
<tr>
<td>13</td>
<td>금강</td>
<td>민경강</td>
<td>C알복동수로</td>
<td>13.8</td>
<td>20.7</td>
<td>4.462</td>
<td>0.385</td>
</tr>
<tr>
<td>14</td>
<td>한강</td>
<td>안성천</td>
<td>C장안천</td>
<td>11.4</td>
<td>12.9</td>
<td>9.701</td>
<td>0.401</td>
</tr>
<tr>
<td>15</td>
<td>한강</td>
<td>시화호</td>
<td>C중양천</td>
<td>11.3</td>
<td>15.9</td>
<td>4.631</td>
<td>0.416</td>
</tr>
<tr>
<td>16</td>
<td>낙동강</td>
<td>수영강</td>
<td>동천2</td>
<td>10.8</td>
<td>11.1</td>
<td>4.033</td>
<td>0.450</td>
</tr>
<tr>
<td>17</td>
<td>금강</td>
<td>민경강</td>
<td>C소룡동수로</td>
<td>10.6</td>
<td>18.6</td>
<td>6.099</td>
<td>0.296</td>
</tr>
<tr>
<td>18</td>
<td>한강</td>
<td>한강서해</td>
<td>C송기천</td>
<td>10.4</td>
<td>15.6</td>
<td>10.391</td>
<td>0.720</td>
</tr>
<tr>
<td>25</td>
<td>금강</td>
<td>삼교천</td>
<td>C곡교천</td>
<td>9.4</td>
<td>10.9</td>
<td>9.130</td>
<td>0.517</td>
</tr>
<tr>
<td>19</td>
<td>낙동강</td>
<td>낙동강하구언</td>
<td>감천천2</td>
<td>8.1</td>
<td>12.2</td>
<td>5.858</td>
<td>0.171</td>
</tr>
<tr>
<td>20</td>
<td>한강</td>
<td>한강서해</td>
<td>장만수천</td>
<td>7.7</td>
<td>9.5</td>
<td>3.546</td>
<td>0.230</td>
</tr>
<tr>
<td>32</td>
<td>금강</td>
<td>미호천</td>
<td>C봉암천</td>
<td>7.1</td>
<td>9.8</td>
<td>6.657</td>
<td>0.293</td>
</tr>
<tr>
<td>21</td>
<td>낙동강</td>
<td>수영강</td>
<td>수영강3</td>
<td>7.1</td>
<td>9.1</td>
<td>9.260</td>
<td>0.213</td>
</tr>
<tr>
<td>22</td>
<td>낙동강</td>
<td>수영강</td>
<td>춘천</td>
<td>7.1</td>
<td>7.8</td>
<td>7.512</td>
<td>0.576</td>
</tr>
<tr>
<td>24</td>
<td>낙동강</td>
<td>낙동강하구언</td>
<td>감천천1</td>
<td>7.0</td>
<td>10.7</td>
<td>5.309</td>
<td>0.160</td>
</tr>
<tr>
<td>26</td>
<td>낙동강</td>
<td>최야강</td>
<td>C상남리수로-1</td>
<td>7.0</td>
<td>10.7</td>
<td>4.819</td>
<td>0.995</td>
</tr>
<tr>
<td>27</td>
<td>낙동강</td>
<td>낙동고령</td>
<td>C용호천</td>
<td>6.8</td>
<td>13.0</td>
<td>7.319</td>
<td>0.156</td>
</tr>
<tr>
<td>28</td>
<td>낙동강</td>
<td>수영강</td>
<td>수영강1</td>
<td>6.7</td>
<td>8.1</td>
<td>3.018</td>
<td>0.137</td>
</tr>
<tr>
<td>29</td>
<td>금강</td>
<td>만경강</td>
<td>C석암천</td>
<td>6.6</td>
<td>11.8</td>
<td>17.977</td>
<td>0.327</td>
</tr>
<tr>
<td>연번</td>
<td>대권역명</td>
<td>중권역명</td>
<td>측정소명</td>
<td>BOD</td>
<td>COD</td>
<td>T-N</td>
<td>T-P</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>30</td>
<td>낙동강</td>
<td>수영강</td>
<td>동천3</td>
<td>6.6</td>
<td>6.3</td>
<td>2.768</td>
<td>0.287</td>
</tr>
<tr>
<td>33</td>
<td>한강</td>
<td>한탄강</td>
<td>C포천천</td>
<td>6.3</td>
<td>11.3</td>
<td>7.082</td>
<td>0.368</td>
</tr>
<tr>
<td>31</td>
<td>금강</td>
<td>미호천</td>
<td>C석남천</td>
<td>6.1</td>
<td>8.1</td>
<td>13.276</td>
<td>0.081</td>
</tr>
<tr>
<td>34</td>
<td>한강</td>
<td>한탄강</td>
<td>C영평천</td>
<td>6.0</td>
<td>10.7</td>
<td>6.086</td>
<td>0.112</td>
</tr>
<tr>
<td>35</td>
<td>낙동강</td>
<td>회야강</td>
<td>C이진리수로</td>
<td>5.9</td>
<td>9.4</td>
<td>17.992</td>
<td>0.134</td>
</tr>
<tr>
<td>36</td>
<td>낙동강</td>
<td>회야강</td>
<td>C고사동수로</td>
<td>5.4</td>
<td>11.9</td>
<td>10.986</td>
<td>0.519</td>
</tr>
<tr>
<td>37</td>
<td>낙동강</td>
<td>감천</td>
<td>C대양천</td>
<td>5.4</td>
<td>11.0</td>
<td>8.643</td>
<td>0.107</td>
</tr>
<tr>
<td>38</td>
<td>금강</td>
<td>만경강</td>
<td>C목천포천</td>
<td>5.2</td>
<td>11.0</td>
<td>10.057</td>
<td>0.190</td>
</tr>
<tr>
<td>39</td>
<td>낙동강</td>
<td>수영강</td>
<td>동천1</td>
<td>5.1</td>
<td>4.6</td>
<td>3.198</td>
<td>0.310</td>
</tr>
</tbody>
</table>

○ 일반하천(63개) (단위 : mg/L)

<table>
<thead>
<tr>
<th>연번</th>
<th>대권역명</th>
<th>중권역명</th>
<th>측정소명</th>
<th>BOD</th>
<th>COD</th>
<th>T-N</th>
<th>T-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>낙동강</td>
<td>낙동강남해</td>
<td>양덕천</td>
<td>20.0</td>
<td>15.3</td>
<td>6.991</td>
<td>0.900</td>
</tr>
<tr>
<td>2</td>
<td>한강</td>
<td>한강고양</td>
<td>굴포천1</td>
<td>18.2</td>
<td>13.4</td>
<td>7.913</td>
<td>0.591</td>
</tr>
<tr>
<td>3</td>
<td>금강</td>
<td>만경강</td>
<td>익산천1-1</td>
<td>15.7</td>
<td>23.9</td>
<td>10.814</td>
<td>1.520</td>
</tr>
<tr>
<td>4</td>
<td>금강</td>
<td>만경강</td>
<td>익산천</td>
<td>13.7</td>
<td>22.3</td>
<td>9.474</td>
<td>1.210</td>
</tr>
<tr>
<td>5</td>
<td>금강</td>
<td>삼교천</td>
<td>천안천2</td>
<td>12.9</td>
<td>11.6</td>
<td>11.113</td>
<td>0.783</td>
</tr>
<tr>
<td>6</td>
<td>한강</td>
<td>한탄강</td>
<td>신천2</td>
<td>12.9</td>
<td>21.1</td>
<td>15.838</td>
<td>0.396</td>
</tr>
<tr>
<td>7</td>
<td>한강</td>
<td>한탄강</td>
<td>신천3</td>
<td>12.0</td>
<td>19.6</td>
<td>11.345</td>
<td>0.281</td>
</tr>
<tr>
<td>8</td>
<td>금강</td>
<td>만경강</td>
<td>음양천</td>
<td>11.8</td>
<td>14.7</td>
<td>9.292</td>
<td>0.157</td>
</tr>
<tr>
<td>9</td>
<td>금강</td>
<td>삼교천</td>
<td>읍천천</td>
<td>11.2</td>
<td>13.1</td>
<td>7.926</td>
<td>0.492</td>
</tr>
<tr>
<td>10</td>
<td>한강</td>
<td>안성천</td>
<td>황구저천-2</td>
<td>11.0</td>
<td>19.8</td>
<td>4.734</td>
<td>0.215</td>
</tr>
<tr>
<td>11</td>
<td>한강</td>
<td>한탄강</td>
<td>신천1</td>
<td>10.9</td>
<td>18.9</td>
<td>14.291</td>
<td>0.525</td>
</tr>
<tr>
<td>12</td>
<td>금강</td>
<td>만경강</td>
<td>마산천</td>
<td>10.1</td>
<td>10.9</td>
<td>5.706</td>
<td>0.152</td>
</tr>
<tr>
<td>13</td>
<td>영산강</td>
<td>영산강하류</td>
<td>무안천</td>
<td>10.1</td>
<td>11.3</td>
<td>8.957</td>
<td>0.317</td>
</tr>
<tr>
<td>14</td>
<td>한강</td>
<td>안성천</td>
<td>황구저천1-1</td>
<td>9.8</td>
<td>11.8</td>
<td>8.948</td>
<td>0.868</td>
</tr>
<tr>
<td>15</td>
<td>한강</td>
<td>한강서울</td>
<td>안양천3</td>
<td>9.7</td>
<td>9.7</td>
<td>16.031</td>
<td>0.130</td>
</tr>
<tr>
<td>16</td>
<td>한강</td>
<td>안성천</td>
<td>오산천3</td>
<td>9.3</td>
<td>11.0</td>
<td>7.911</td>
<td>0.436</td>
</tr>
<tr>
<td>17</td>
<td>한강</td>
<td>안성천</td>
<td>성환천</td>
<td>8.9</td>
<td>11.0</td>
<td>5.436</td>
<td>0.291</td>
</tr>
<tr>
<td>18</td>
<td>한강</td>
<td>안성천</td>
<td>진위천2</td>
<td>8.7</td>
<td>10.8</td>
<td>7.551</td>
<td>0.291</td>
</tr>
<tr>
<td>19</td>
<td>한강</td>
<td>안성천</td>
<td>황구저천1</td>
<td>8.6</td>
<td>10.8</td>
<td>4.949</td>
<td>0.138</td>
</tr>
<tr>
<td>20</td>
<td>한강</td>
<td>한강고양</td>
<td>굴포천2</td>
<td>8.3</td>
<td>11.1</td>
<td>11.368</td>
<td>1.562</td>
</tr>
<tr>
<td>21</td>
<td>한강</td>
<td>한강서울</td>
<td>탄천1</td>
<td>8.3</td>
<td>9.7</td>
<td>6.850</td>
<td>0.204</td>
</tr>
<tr>
<td>22</td>
<td>한강</td>
<td>안성천</td>
<td>오산천2-1</td>
<td>8.2</td>
<td>11.1</td>
<td>10.171</td>
<td>0.561</td>
</tr>
<tr>
<td>23</td>
<td>한강</td>
<td>안성천</td>
<td>진위천3</td>
<td>8.2</td>
<td>12.9</td>
<td>7.682</td>
<td>0.587</td>
</tr>
<tr>
<td>24</td>
<td>한강</td>
<td>한강서울</td>
<td>중량천4</td>
<td>8.1</td>
<td>9.6</td>
<td>13.230</td>
<td>1.192</td>
</tr>
<tr>
<td>연번</td>
<td>대권역명</td>
<td>중권역명</td>
<td>측정소명</td>
<td>BOD</td>
<td>COD</td>
<td>T-N</td>
<td>T-P</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>25</td>
<td>한강</td>
<td>안성천</td>
<td>황구거지천2</td>
<td>7.9</td>
<td>11.2</td>
<td>8.325</td>
<td>0.895</td>
</tr>
<tr>
<td>26</td>
<td>한강</td>
<td>한강고양</td>
<td>공릉천3</td>
<td>7.8</td>
<td>11.0</td>
<td>5.737</td>
<td>0.222</td>
</tr>
<tr>
<td>27</td>
<td>한강</td>
<td>한강서울</td>
<td>탄천2</td>
<td>7.8</td>
<td>9.2</td>
<td>5.843</td>
<td>0.280</td>
</tr>
<tr>
<td>28</td>
<td>금강</td>
<td>삼교천</td>
<td>곡교천2</td>
<td>7.5</td>
<td>12.5</td>
<td>8.430</td>
<td>0.400</td>
</tr>
<tr>
<td>29</td>
<td>금강</td>
<td>만경강</td>
<td>전주천6</td>
<td>7.3</td>
<td>18.0</td>
<td>7.643</td>
<td>0.620</td>
</tr>
<tr>
<td>30</td>
<td>금강</td>
<td>부남방조제</td>
<td>청천천</td>
<td>7.2</td>
<td>8.4</td>
<td>3.747</td>
<td>0.205</td>
</tr>
<tr>
<td>31</td>
<td>금강</td>
<td>대호방조제</td>
<td>담진천1</td>
<td>7.2</td>
<td>10.3</td>
<td>5.735</td>
<td>0.433</td>
</tr>
<tr>
<td>32</td>
<td>한강</td>
<td>안성천</td>
<td>진위천2-1</td>
<td>7.0</td>
<td>11.5</td>
<td>7.786</td>
<td>0.634</td>
</tr>
<tr>
<td>33</td>
<td>금강</td>
<td>논산천</td>
<td>방촉천</td>
<td>7.0</td>
<td>9.6</td>
<td>5.384</td>
<td>0.246</td>
</tr>
<tr>
<td>34</td>
<td>한강</td>
<td>한강고양</td>
<td>공릉천2</td>
<td>6.8</td>
<td>9.3</td>
<td>5.575</td>
<td>0.141</td>
</tr>
<tr>
<td>35</td>
<td>한강</td>
<td>한탄강</td>
<td>한탄강3-1</td>
<td>6.6</td>
<td>13.9</td>
<td>6.282</td>
<td>0.126</td>
</tr>
<tr>
<td>36</td>
<td>한강</td>
<td>한강서울</td>
<td>양양천4</td>
<td>6.4</td>
<td>10.0</td>
<td>17.389</td>
<td>0.230</td>
</tr>
<tr>
<td>37</td>
<td>한강</td>
<td>한탄강</td>
<td>영평천3</td>
<td>6.4</td>
<td>10.8</td>
<td>6.616</td>
<td>0.138</td>
</tr>
<tr>
<td>38</td>
<td>영산강</td>
<td>외산천</td>
<td>외산천1</td>
<td>6.0</td>
<td>9.8</td>
<td>5.418</td>
<td>0.274</td>
</tr>
<tr>
<td>39</td>
<td>한강</td>
<td>한탄강</td>
<td>포천천</td>
<td>6.0</td>
<td>10.7</td>
<td>7.144</td>
<td>0.161</td>
</tr>
<tr>
<td>40</td>
<td>금강</td>
<td>동진강</td>
<td>고부천2</td>
<td>6.0</td>
<td>10.2</td>
<td>3.721</td>
<td>0.099</td>
</tr>
<tr>
<td>41</td>
<td>한강</td>
<td>안성천</td>
<td>황구거지천3</td>
<td>6.0</td>
<td>10.8</td>
<td>7.759</td>
<td>0.767</td>
</tr>
<tr>
<td>42</td>
<td>영산강</td>
<td>영산강중류</td>
<td>영산천</td>
<td>5.9</td>
<td>12.4</td>
<td>8.416</td>
<td>0.435</td>
</tr>
<tr>
<td>43</td>
<td>한강</td>
<td>한강서울</td>
<td>양숙천3</td>
<td>5.9</td>
<td>9.9</td>
<td>8.324</td>
<td>0.528</td>
</tr>
<tr>
<td>44</td>
<td>낙동강</td>
<td>낙동강남해</td>
<td>내동천</td>
<td>5.8</td>
<td>7.2</td>
<td>4.853</td>
<td>0.329</td>
</tr>
<tr>
<td>45</td>
<td>금강</td>
<td>금천하해</td>
<td>광천천</td>
<td>5.7</td>
<td>12.5</td>
<td>8.176</td>
<td>0.278</td>
</tr>
<tr>
<td>46</td>
<td>한강</td>
<td>한탄강</td>
<td>한탄강3-1A</td>
<td>5.7</td>
<td>11.1</td>
<td>7.068</td>
<td>0.133</td>
</tr>
<tr>
<td>47</td>
<td>한강</td>
<td>한강서울</td>
<td>양숙천4</td>
<td>5.7</td>
<td>7.8</td>
<td>8.705</td>
<td>0.138</td>
</tr>
<tr>
<td>48</td>
<td>금강</td>
<td>부남방조제</td>
<td>태안천</td>
<td>5.7</td>
<td>7.8</td>
<td>9.054</td>
<td>0.833</td>
</tr>
<tr>
<td>49</td>
<td>한강</td>
<td>안성천</td>
<td>안성천3</td>
<td>5.7</td>
<td>10.9</td>
<td>4.840</td>
<td>0.241</td>
</tr>
<tr>
<td>50</td>
<td>한강</td>
<td>안성천</td>
<td>안성천2</td>
<td>5.6</td>
<td>7.3</td>
<td>4.621</td>
<td>0.201</td>
</tr>
<tr>
<td>51</td>
<td>금강</td>
<td>금강하구역</td>
<td>산북천</td>
<td>5.6</td>
<td>12.5</td>
<td>4.816</td>
<td>0.225</td>
</tr>
<tr>
<td>52</td>
<td>금강</td>
<td>금강공주</td>
<td>석성천</td>
<td>5.5</td>
<td>7.7</td>
<td>4.715</td>
<td>1.084</td>
</tr>
<tr>
<td>53</td>
<td>금강</td>
<td>동진강</td>
<td>고부천1</td>
<td>5.5</td>
<td>10.1</td>
<td>3.933</td>
<td>0.105</td>
</tr>
<tr>
<td>54</td>
<td>영산강</td>
<td>영산강하류</td>
<td>삼포천1</td>
<td>5.5</td>
<td>9.0</td>
<td>4.619</td>
<td>0.266</td>
</tr>
<tr>
<td>55</td>
<td>한강</td>
<td>한강서울</td>
<td>도심천</td>
<td>5.5</td>
<td>5.0</td>
<td>4.833</td>
<td>0.254</td>
</tr>
<tr>
<td>56</td>
<td>한강</td>
<td>한강고양</td>
<td>파주</td>
<td>5.3</td>
<td>9.3</td>
<td>5.865</td>
<td>0.292</td>
</tr>
<tr>
<td>57</td>
<td>금강</td>
<td>만경강</td>
<td>김제</td>
<td>5.3</td>
<td>12.9</td>
<td>5.242</td>
<td>0.355</td>
</tr>
<tr>
<td>58</td>
<td>한강</td>
<td>한강서울</td>
<td>양양천5</td>
<td>5.3</td>
<td>8.3</td>
<td>14.206</td>
<td>0.123</td>
</tr>
<tr>
<td>59</td>
<td>금강</td>
<td>금강공주</td>
<td>석성천2</td>
<td>5.2</td>
<td>10.8</td>
<td>4.147</td>
<td>0.698</td>
</tr>
<tr>
<td>60</td>
<td>낙동강</td>
<td>낙동강하구역</td>
<td>서낙동강4</td>
<td>5.2</td>
<td>9.4</td>
<td>5.548</td>
<td>0.099</td>
</tr>
<tr>
<td>61</td>
<td>한강</td>
<td>안성천</td>
<td>관리천</td>
<td>5.1</td>
<td>9.9</td>
<td>5.246</td>
<td>0.254</td>
</tr>
<tr>
<td>62</td>
<td>낙동강</td>
<td>낙동강하구역</td>
<td>서낙동강3</td>
<td>5.1</td>
<td>10.0</td>
<td>8.179</td>
<td>0.126</td>
</tr>
<tr>
<td>63</td>
<td>한강</td>
<td>안성천</td>
<td>입창천</td>
<td>5.1</td>
<td>8.7</td>
<td>3.294</td>
<td>0.218</td>
</tr>
<tr>
<td>분야</td>
<td>과 정 명</td>
<td>교육 내용</td>
<td>교육대상</td>
<td>교육기간 또는 차시</td>
<td>교육 방법</td>
<td>교육 인원</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>물환경</td>
<td>물하수도 정책</td>
<td>○물환경 정책방향의 이해 ○비점오염 및 수생태복원정책의 이해 ○오염총량관리제도 ○수도 및 하수도 정책방향의 이해</td>
<td>○전공무원 ○공기업, 정부투자 기관 직원</td>
<td>5일 (35시간)</td>
<td>집합 교육</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>물환경시설 탑방</td>
<td>○취수 및 정수시설 운영관리 사례 ○수질오염사고대응 및 사례분석 ○정수시설, 수도박물관, 하수처리장 등 현장학습</td>
<td>○전공무원 ○공기업, 정부투자 기관 직원</td>
<td>5일 (35시간)</td>
<td>집합 교육</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>수질 TMS전문</td>
<td>○수질TMS정책 ○수질TMS 관련 사례탐구 ○수질TMS시스템 관련 업무 ○기기 측정원리 및 유지관리</td>
<td>○전공무원 ○공기업, 정부투자 기관 직원</td>
<td>3일 (21시간)</td>
<td>집합 교육</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>하천 및 호수관리</td>
<td>○하천 및 호수생태계와 관리방안 ○녹조발생현황과 관리 ○조류독소 및 이취미물질 분석기법 ○유해성 날조류의 예측 및 제어기술</td>
<td>○전공무원 ○공기업, 정부투자 기관 직원</td>
<td>3일 (21시간)</td>
<td>집합 교육</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>토양 및 지하수관리</td>
<td>○오염토양·지하수 정화방법 및 기술 ○먹는물 취약지역 안심화수 관리 ○지하수 수질검사제도 및 점검 ○토양 및 지하수 오염특성과 관리방안</td>
<td>○전공무원 ○공기업, 정부투자 기관 직원</td>
<td>5일 (32시간)</td>
<td>집합 교육</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>하수 및 분뇨처리</td>
<td>○하수도정책 ○하수처리장 기본계획 및 종합정비 ○고도처리 공법 및 기술 동향 ○항거방지 및 제거기술</td>
<td>○전공무원 ○공기업, 정부투자 기관 직원</td>
<td>5일 (35시간)</td>
<td>집합 교육</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>하수도관리</td>
<td>○공공 및 개인하수도 정책방향 ○공공하수도 설치 및 관리 ○오수발생량신정, 악취저감 ○개인하수도 설치 및 운영 유지관리</td>
<td>○전공무원 ○공기업, 정부투자 기관 직원</td>
<td>3일 (21시간)</td>
<td>집합 교육</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
국외 사례 1-2-1

유네스코 물 전문가 및 대한복습

미국, 다양한 컨텐츠를 활용하여 물환경 교육 및 홍보 중

- 미국 물교육재단(Water Education Foundation)은 물교육프로그램 운영, 물전문가(Water Leaders) 양성, 특별사업(워크숍, 강연), 간행물(전문서적, 잡지, 보고서, 동영상) 편찬 등 물과 관련된 다양한 활동을 하고 있음
 - 물교육프로그램에는 Project WET, School Programs, Water Kids 등이 있음
 - 교육프로그램에서는 물에 대한 인식, 감수성, 지식, 보전의식 함양을 목적으로 학교 급별(유치원생, 초중고등학생, 대학생 등)에 따른 다양한 물교육 교재 및 교구재, 수업지도안을 개발하고 환경교육활동, 민간 시민단체 활동, 학교 교육자 및 교무 지도자를 위한 워크숍과 강습회를 개최함
- 다양한 분야의 전문가를 대상으로 사회지도층 인사들이 멘토가 되어 참가자들의 리더십을 증진시키고 물이슈와 관련된 결정에 대한 효과적인 접근을 할 수 있도록 준비하시는 물전문가 양성 프로그램을 운영 중

- 미국 환경청(US EPA)에서 물환경 교육을 컨퍼런스/워크숍, 강의자료, 사이버 교육 형태로 운영 중
 - 강의자료는 교사용과 초등학생용으로 구분되어 교육대상에 따라 선택할 수 있도록 구성되어 있으며 사이버 교육은 물관련 주요 이슈들에 대한 강의안, 지도안, 자료 등을 홈페이지에 탑재하여 실시하고 있음

- 미국에서는 수질을 오염시키는 시설에 대한 허가를 받는 경우 대중에 대한 교육과 홍보에 대한 계획하도록 하고 있음
 - 연방수질규제에 의해 미국 내 수체로 오염물질을 배출하는 모든 시설은 국가오염배출량감소시스템(NPDES, National Pollutant Discharge Elimination System) 허가를 받아야 하는데 도시분류식수관거(MS4s, Municipal Separate Storm Sewer Systems)에서 배출되는 우수도 허가대상으로 규정되어 있음
 - MS4에 대한 허가 신청시 최소통제대책(MCM, Minimum Control Measures)을 계획해야 하는데 최소통제수단 중 하나로 주민 교육과 홍보에 대한 이행사항을 가이드라인을 수립하고 목표를 설정하게 하고 있음\(^{31}\)

일본, 유역 하천중심의 물문화 체험 및 교육기반 마련

- 일본의 지토세 강은 강이 원래 가지고 있는 생물의 양호한 생육 환경을 배려하고 종합해 아름다운 자연 경관을 보전하는 “지토세 강 만들기 사업”을 통해 주민들이 하천의 경관유지를 위해
여 쓰레기 제거 및 주변청소 활동을 하고 있으며 환경조사와 자연 복원을 위한 강 주변의 생물 조사, 주민들의 환경관련 교육을 위한 ‘강학원’이라는 프로그램을 개최하여 초·중학생을 대상으로 환경교육을 실시
- 계절별로 본에는 이자리강(漁川)에서 강의 생물 조사, 여름에는 지토세(千歳)강에서 리버 레스큐(rescue), 강돌이, 생물조사, 가을에는 강의 쓰레기 줍기, 폐유 비누 만들기, 겨울에는 설 중나무 심기 등의 활동 전개
- 또한 저어방류를 통한 하천에 대한 애착심 고취, 하천변에 300만 그루 식재, 이리카리강 유역 교류 축제 개최, 월령 연어 그린 리버행사 실시, 바람으로 쓰러진 나무로 하천부지 정비, 치수 감사축제, 어린이 방재 캠프, 강변 수영버들 배포 행사, 유역내의 초·중학교를 대상으로 강에 대한 모국, 옥내학습을 지원하는 종합 학습회 운영
- 이와 함께 여름 방학 중에 유역의 초·중학생이 참가하는 지토세강 자연 관찰회도 실시하고 있다. 이런 직접 참여 활동을 통한 지역내 하천과 가까워지고 보전, 보호, 참여해야하는 동기 부여를 통해 자연환경 개선 및 수질개선과 참여 물문화의 기틀 구축
◆ 일본의 아자메 습지 환경교육활동
○ 일본 아자메 습지에서는 어린이들을 대상으로 즐거운 논 학교, 물고기 채집 환경교실, 대학생 주최 환경학습 프로그램 등 환경학습 프로그램과 환어 물이 축제, 동범 물 배기 행사 등 전통 행사를 운영하여 많은 호응을 얻음(한국건설기술연구원, 2010, 사람과 자연이 바라는 지속가능한 물관리)

231) 대중 교육과 홍보는 강우 유출수의 영향에 대한 자료 배포를 통해 대중교육 프로그램의 시행 또는 아웃리치 활동을 통한 우수의 영향과 저감방법에 대한 교육을 실시하는 내용으로 가이드라인을 수립해야 한다. 주로 가이드라인 내에 있는 파트너십 설정, 교육용 자료와 전략, 다양한 피교육자 설정의 내용을 담는다(USEPA, 2005).
1-3. e-거버넌스를 활용한 정보공개와 쌍방향 의사소통

가. 현황 및 문제점

- e232) e-거버넌스는 정보통신기술(ICT)을 기반으로 거버넌스를 구현하는 사회 기술 시스템이라 정의233)
- e-거버넌스는 정부주도의 의사결정에 대한 수동적 참여를 넘어 시민이 주도적으로 정보공개를 요구하거나 민원을 제기하고 유역의 물 문제 해결에 기여할 수 있는 플랫폼
- e-거버넌스는 ICT의 신속성234), 쌍방향적 의사소통양식235), 대용량 데이터 처리236), 저렴한 비용237)의 장점을 활용하여 “누구나 시공간을 초월하여 상호작용적인 의사소통과 정보공유가 가능하게 만들어, 다양한 시민 및 이해관계대상자가 직접 정책결정과정에 참여할 기회를 확대 한다”는 점에서 새로운 시대에 걸맞은 거버넌스의 모델로 이해되고 있음238)

<table>
<thead>
<tr>
<th>참여 지표</th>
<th>전통적 통치</th>
<th>전통적 거버넌스</th>
<th>e-거버넌스</th>
</tr>
</thead>
<tbody>
<tr>
<td>방향성</td>
<td>대의 간접 민주주의</td>
<td>다수적 협의민주주의</td>
<td>다수적 직접 민주주의</td>
</tr>
<tr>
<td>의사결정</td>
<td>소수의 중앙집권적</td>
<td>확산된 분권적</td>
<td>다수의 통합적</td>
</tr>
<tr>
<td>참여 유형</td>
<td>수동적/일방향적</td>
<td>수동적/일방향적</td>
<td>적극적/쌍방향적</td>
</tr>
<tr>
<td>참여 영향</td>
<td>간접적/지연적</td>
<td>간접적/지연적</td>
<td>직접적/즉각적</td>
</tr>
</tbody>
</table>

232) “e”라는 명명되는 정보통신기술의 발전방향은 아날로그에서 디지털로, 일방향성에서 쌍방향성으로, 분산적 처리에서 통합적 처리가 되어 진화하는 과정을 거쳤다.
233) 명승환, 2000, “인터넷시대에 있어서의 정부와 시민간의 관계조명”, New Governance and Cyber Governance
234) 정보기술의 신속성은 시공간을 초월하여 정부-개인-조직 간의 의사소통 및 의사결정을 신속하게 해준다.(명승환, 2012)
235) 쌍방향적인 커뮤니케이션의 가능성은 정부 입장에서는 인터넷의 상호작용성을 이용하여 국민으로부터 정책에 대한 즉각적인 반응을 얻고 불필요한 업무의 부담을 줄이고, 시민의 입장에서는 원하는 서비스를 신속하게 제공받는 기회를 부여받게 되었다.
236) 정보기술의 발달은 저렴한 시대를 국민에게 공개하고 공부하는 것을 가능하게 하였다. 국민에 의한 행정의 감시, 정보의 투명성 확보가 가능해졌다.
237) 정보기술의 발달은 사용자로 하여금 저렴한 비용으로 의사결정의 각 단계에 사회의 구성원이 활발하게 참여할 기회를 확보하게 하였다.
238) 명승환, 2012, 스마트 전자정부론, 을곡출판사
미래는 물환경 부문에서 지능형 e-거버넌스에 대한 요구가 증가할 전망

- 향후 10년은 기술면에서 센서, 네트워크, 통신, 빅데이터 분석 기술은 비약적으로 발전할 전망
- 정치적으로 국민들이 환경 문제제기부터 해결까지 단계별 의사결정 과정에 주도적으로 참여하고자 하는 요구와 강도가 증가

특히, 물환경 부문에서는 물환경 정책 및 사업과 관련된 분쟁과 갈등이 다차원적으므로 심화되고 있으며, 이러한 환경갈등의 문제는 여러 원인240)이 있으나 그 중 하나는 절차상의 합리성 부족 때문
- 즉, 물환경 사업 내지 행정이 일방적이고 다양한 이해관계자의 참여를 제한해 지역주민이나 국민의 갈등을 유발됨

그러므로, 물환경 관리에서도 시대변화의 요구를 받아 들여 국민들의 적극적 참여를 통한 환경문제 및 갈등을 해결하기 위한 방편으로 e-거버넌스의 구축과 적용이 필요

239) 지역주민-지역주민, 정부-지역주민, 부처간의 갈등, 지방정부-중앙정부간 갈등, 지방정부-지방정부 간의 갈등 등이 있다.(김종호 외, 2004)
240) 이해관계 갈등, 가치갈등, 사리관계갈등, 구조적갈등 등으로 나눌 수 있다.(김종호 외, 2004)
나. 주요대책

* 지능형 e-거버넌스 시스템 구축
* 지능형 e-거버넌스 인터페이스 개발 및 교육기회 제공
* 소유역 물환경 역량 증진을 위한 맞춤형 교육/홍보 방안 개발

박. 지능형 e-거버넌스 시스템 구축

『 기본방향 』 환경부는 e-거버넌스 시스템을 구축하여 중앙부처, 지방자치단체, 산업체, 전문가, 지역주민 등 다양한 주체들이 상호 의사소통과 정보공유를 가능하게 하고 직접 정책결정과정에 참여할 수 있도록 추진

물환경 관련 정보(의사결정 포함)를 축적한 데이터베이스 및 포탈서비스 시스템 구축

- 환경부는 물환경 관리 사업이나 행정에서 현재 협의가 진행 중이거나 완료된 목록을 디지털화하여 인터넷이나 모바일에 투명하게 모두 공개
- 또한, 국민과 이해관계대상자 들이 협의하고 논리적으로 의견을 결정할 수 있도록 각 협의와 관련된 자료와 정보들을 링크화 하여 쉽게 접근할 수 있도록 통합적인 서비스 시스템을 구축
- 원스탑샵 형태의 포탈시스템을 구축하여 어떤 협의가 어디서 어떻게 이루어지고 있는지, 그 결과는 어떠한지에 대한 효율적인 정보접근과 획득을 할 수 있어야 하며 시민의 피드백이 의사결정 모든 단계에서 문제없이 신속히 반영되도록 해야 함

박. 지능형 e-거버넌스 인터페이스 개발 및 교육기회 제공

- 환경부와 지자체는 다양한 채널을 제공하여 시민들이 정부와 의사소통하고 행정처리 할 수 있는 인터페이스 개발 및 교육기회 제공
- 홍보/교육적으로는 모든 시민들의 e-literacy 제고 문제를 평생교육의 차원에서 접근할 필요가 있으며 관련 중앙 및 지방공무원들도 e-거버넌스 서비스의 전달, 관리, 사용과 관련된 교육훈련을 지속적으로 수행
기술적으로 e-literacy가 부족한 계층이나 집단도 쉽게 접근할 수 있도록 쉽고 용이한 인터페이스 개발 및 제공
- 또한 모든 사용자들이 개인, 사회문화적 특성 혹은 지리적 위치에 상관 없이 사용하기 편한 방법으로 기술이 개발되고 적용

정부나 지자체에서 시민으로 일방향의 의견수렴 형태에서 벗어나, 물환경 정책의 의제선정에서부터 시민이 참여할 수 있도록 플랫폼 제공
- 국민이 생활체험이 속에서 관심을 가지는 이슈를 파악 및 선정하여 정책 반영
- 정부는 많은 사람들의 의견을 수렴하여 정책결정에 반영 가능
- 더 많은 사람들의 의견을 얻기 위해 상대적으로 인지도가 높은 포털사이트 팝업 광고를 통해 e-거버넌스 사이트로 유인 할 수 있는 방안도 고려

[문서의 내용을 제목으로 나열]

- e-거버넌스 시스템의 지속적인 품질관리 계획 수립
 - 타인의 명의도용으로 의견제시를 하지 못하게 인증기술과 개인정보유출 문제가 없도록 보안 기술 확보
 - e-거버넌스 서비스의 신뢰성 및 책임성 확보를 위한 성과기반의 서비스 품질 관리체계 구축241).

다. 향후 추진 일정

- 물환경 e-거버넌스 체계 구축 및 컨텐츠 마련(’16∼’17)
- 물환경 e-거버넌스 시스템 품질관리 계획 수립(’18)
- 물환경 e-거버넌스 서비스 플랫폼 구축(’17∼’20)
- 국민과 정부 대상 e-거버넌스 역량강화를 위한 교육 및 홍보(’17∼’23)

241) 오강탁 · 이연우, 2005 참여정부 전자정부 수준과 향후 추진 전략
유럽의 원스탑 쌍방향정책 결정 시스템

유럽의 경우 'Your voice in Europe'이라는 웹포털을 통해 쌍방향 정책결정 시스템(Interactive Policy making)을 구현
- 모든 부문의 EC(European Commission) 시민들의 협의(consultation)를 위한 원스탑 샵(one-stop shop)
- EC의 쌍방향 정책결정 시스템은 의제결정, 분석, 정책형성, 정책집행, 모니터링 단계 모두에서 온라인 협의와 피드백 메커니즘을 활용
- 시민들은 현재 진행되고 있거나 종료된 협의목록을 분야별로 선택할 수 있으며, 그 주제에 맞는 온라인 설문을 작성하고, 이 후 온라인 협의 결과가 정책결정에 활용되는 과정을 투명하게 전달 받을 수 있음

[유럽 Your voice in Europe]
◆ 일본의 아라카와강 주민참여

○ 아라카와강의 하천쓰레기 관리는 처음에는 지자체 주도로 시작하였으나 이후 시민단체가 참여하였고, 기업 및 학교 등으로 확대
 - 일회당 약 한시간 정도의 하천쓰레기 수거활동을 연간 100여회 펼치고 있으며, 일회당 참여 인원은 50~100명으로 연인원 13,000여명이 참여하고 있는 것으로 집계
 - 시민단체, 기업, 학교 등이 자발적으로 참여하고 있으며, 비영리민간단체(NPO)는 쓰레기봉투를 제공하고, 수거된 쓰레기의 처리는 지자체가 담당
 - 이러한 활동의 목적은 쓰레기의 수거 자체 보다는 주민의 직접적인 참여를 통해 의식개혁 및 예방기술 강화를 주목적으로 하고 있음

○ 특히 아라카와강에서는 주민에게 관련 정보를 알리기 위해, 민간단체가 주도하고 국토교통성 이 지원하여 하천쓰레기 지도를 작성하여 배포
 - 하천 주요 지점에서 수거된 쓰레기 종류와 양을 표시
 - 하천쓰레기 지도는 주민들에 대한 홍보와 교육에 긍정적인 효과를 준 것으로 평가되는데, 직접적인 효과는 하천변의 쓰레기가 ’05년 1,715㎥에서 ’12년 520㎥로 감소

242) “E-governance 활성화를 위한 과제와 발전방향” 한국행정연구원 (문신용, 2006)
243) 정책으로 확립되었으면 하는 요구들의 설정, 논의될 이슈와 문제들을 정의(문신용, 2006)
244) 정책초안을 만들기 위해 더 깊이 제안될 문제들을 분석함(문신용, 2006)
245) 정책을 형성하고 이해관계자의 관점을 반영한, 실행가능한 정책으로 정비함(문신용, 2006)
246) 입법행성, 집행과정에서 다른 단계들을 포함함. 공표계획을 형성함(문신용, 2006)
247) 어떻게 특정 정책이 집행되고 토의되고 보고되는지에 대한 일반적인 의견을 조사하고, 가능하다면 정책수정으로 완결됨
248) 피드백 메커니즘은 이해관계자들이 의제설정, 분석, 정책형성, 정책집행의 어느 단계에서도 피드백 메커니즘을 이용하여 의견을 제시할 수 있음. European Information Centre, Citizen Signpost Services, Euroguichets의 네트워크 를 통해서 이해관계자들은 의견이 EC로 전달되고, 모니터링 부분이 피드백 메커니즘에서 가장 중요한 부분으로 작용함 (문신용, 2006)
제 2차 물 환경관리 기본계획 부록

제 3부 기반 및 영향 강화 전략

자료: 환경부, 2013, 제2차 5대강 유역 하천하구쓰레기 관리 기본계획 수립을 위한 연구

〈아라카와강의 하천쓰레기 지도〉
제2차 물환경관리 기본계획 본록

자료: 환경부, 2013, 제2차 5대강 유역 하천하구쓰레기 관리 기본계획 수립을 위한 연구

(아라카와강의 하천쓰레기 감소 현황)
1-4. 비용부담체계의 확립

가. 현황 및 문제점

- 방류수수질기준 강화 및 고도처리공정 도입 등으로 처리원가가 상승하여 하수도 요금 현실화율이 감소 추세
- 하수도 요금 현실화율은 '05년 60.2%에서 '13년 38.3%으로 하락하였으며, 상수도 요금 현실화율은 '05년 82.8%에서 '11년 76.1%로 감소

- 4대강 수계 물관리와 주민지원 등을 위해 물이용부담금을 재원으로 수계 관리기금 운용 중

- '99년부터 '14년까지 조성된 수계관리기금은 총 9조 1,819억원으로 주민 지원사업, 환경기초시설 설치 및 운영비, 토지매수 및 수변구역 관리 등 주민 보상과 상수원 수질개선에 사용

〈표 1-4-1〉 수계관리기금 사용 현황('99~'14)

<table>
<thead>
<tr>
<th>구분</th>
<th>계</th>
<th>한강</th>
<th>낙동강</th>
<th>금강</th>
<th>영산강</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>91,819</td>
<td>52,527</td>
<td>21,905</td>
<td>9,873</td>
<td>7,514</td>
</tr>
<tr>
<td>주민지원사업</td>
<td>17,511</td>
<td>10,501</td>
<td>3,350</td>
<td>2,051</td>
<td>1,609</td>
</tr>
<tr>
<td>환경기초시설 설치·운영</td>
<td>43,544</td>
<td>24,322</td>
<td>12,973</td>
<td>4,965</td>
<td>1,284</td>
</tr>
<tr>
<td>토지매수 및 수변구역 관리</td>
<td>20,079</td>
<td>10,925</td>
<td>3,526</td>
<td>1,940</td>
<td>3,688</td>
</tr>
<tr>
<td>오염총량관리</td>
<td>1,480</td>
<td>302</td>
<td>491</td>
<td>395</td>
<td>292</td>
</tr>
<tr>
<td>기타 수질개선지원</td>
<td>7,743</td>
<td>5,671</td>
<td>1,217</td>
<td>346</td>
<td>509</td>
</tr>
<tr>
<td>기금운영비</td>
<td>1,462</td>
<td>806</td>
<td>348</td>
<td>176</td>
<td>132</td>
</tr>
</tbody>
</table>

1) 환경부 (2011), 하수도 통계 (2013)
2) 수계관리기금으로 조성되는 물이용부담금 제도는 물을 이용하는 시민들이 상수원 보호를 위해 규제를 받고 있는 주민들의 지원과 보상, 수질개선에 필요한 재원을 확보하기 위해 부담하는 상생의 정신에 기초하는 제도로써 국제적으로 내세울만한 선진적인 유역협력관리 제도
제도 시행 15년이 경과하면서 기존 기금 운용 시스템에 대한 문제점이 지속적으로 제기
- 관리대상 오염원의 변화, 지역특성에 적합한 관리방식, 수질오염총량제 시행 등 물관리 여건이 변화하면서 기금지원 수요도 변화
- 아울러 상류지역 산단 및 공장 등은 취수·이용량이 상당할에도 불구하고 상류지역에 위치하고 있어 물이용부담금 면제되는 등 수익자 부담원칙에 따라 재검토가 필요한 실정

나. 주요대책

- 비용부담 원칙 강화
- 물이용부담금 운영 개선
- 수계기금 확대 활용방안 강구

▶ 비용부담 원칙 강화
- 오염자 부담, 사용자 부담 원칙을 강화하고 환경 서비스에 대한 효율적이고 투명한 부과체계 구축
- 상하수도 요금을 단계별로 현실화함으로써 지방정부의 재정을 건전화하여 물의 효율적 사용을 유도하고 시설 재투자 등의 선순환의 구조로 변화

▶ 물이용부담금 운영 개선
- 물이용부담금 부과대상 수역 조정, 상수원관리지역 범위 조정, 부과요율 등 물이용부담금 제도의 문제점을 파악하고 필요시 개선방안 마련을 위한 연구와 검토를 추진
- 물이용부담금 관리체계를 더욱 효율화하기 위해 노력함
 - 홍수통제소, 수자원공사 등 물이용부담금 징수와 관련된 관계기관과 공조를
강화하기 위해 자료협조 요청, 정기적 회의 개최 등을 실시하고 필요시 관련 법규정을 정비
- 수계관리기금의 여유자금을 최소화하고 수익률을 제고하기 위해 불용액 최소화 노력, 운용인력 전문성 강화, 정부 정책 참여 등을 검토하여 추진
- 수계관리기금의 전자적 관리체계를 구축하고 국가·지방재정관리시스템과 연계가 될 수 있도록 관계기관과 협조체계를 구축
- 민간위원 중심으로 성과평가위원회를 구성하는 방안을 검토하고 평가 결과에 따라 사업예산 증액·삭감조치를 명문화하며 평가항목·지표 등을 현실화하고 사업별로 재설정하는 등 성과평가에 기반한 수계기금 운용체계를 마련

韧性 확대 활용방안 강구
- 수계관리기금을 활용하여 물환경관리를 수행하는 민간단체 및 '소유역환경센터'의 제정적 지원방안을 마련
- 노후 상하수관망 교체사업 등 수계기금 지원사업의 범위를 확대하는 방안 검토

다. 향후 추진 일정
- 비용부담 원칙 강화('17~'25)
- 물이용부담금 운영 개선('16~'25)
- 수계기금 확대 활용방안 강구('16~'25)
1-5. 물환경 갈등 조정 강화

가. 현황 및 문제점

- 산업화와 지역개발을 지원하기 위한 공급위주의 관리정책으로 자연스러운 물순환이 왜곡되면서 물을 둘러싼 지역간의 불평등을 야기
 - 상류유역 개발에 따른 하류유역의 수질문제, 상수원보호를 위한 중복규제 문제, 수리권 문제 등 발생
 - 상수도보급율은 특·광역시는 99.9%, 일반 시지역은 99.1%, 농어촌 면지역과 도서지역은 62.2%('12년 기준)
 - 하수도보급률 역시 지역간 격차를 보여, 도시지역은 94.6%인 반면, 읍면지역은 62.1% 수준('12년 기준)
 - 진주 남강댐 물을 부산시의 식수로 공급하는 문제로 일어난 부산·경남 간 갈등
 - 지리산댐 건설을 두고 일어난 경남과 전북·전남 간의 갈등
 - 댐용수 사용료에 대한 강원도, 경기도, 서울시가 한국수자원공사와 겪는 갈등

<table>
<thead>
<tr>
<th>갈등주체</th>
<th>갈등내용</th>
<th>갈등유형</th>
</tr>
</thead>
<tbody>
<tr>
<td>대구시와 부산시(경남)</td>
<td>대구 위천공단 건설관련 갈등</td>
<td>상하류간 갈등</td>
</tr>
<tr>
<td>춘천시와 수자원공사</td>
<td>소양댐 취수 관련</td>
<td>물 사용료 갈등</td>
</tr>
<tr>
<td>서울시와 수자원공사</td>
<td>취수장 통합이전하면서 기득 수리권 인정 요구</td>
<td>기득수리권 갈등</td>
</tr>
<tr>
<td>전라북도 충청도 대전광역시</td>
<td>용담댐 용수배분 관련 갈등</td>
<td>용수배분 및 수리권 갈등</td>
</tr>
<tr>
<td>경상남도와 전북전남</td>
<td>지리산댐 건설을 둘러싼 갈등</td>
<td>환경피해</td>
</tr>
<tr>
<td>충청남도 전라북도</td>
<td>금강호를 둘러싼 농업공업용수 취수원 갈등</td>
<td>취수원 확보갈등</td>
</tr>
<tr>
<td>안성시와 평택시</td>
<td>유천취수장으로 인한 상수원 보호 갈등</td>
<td>취수원 관련 갈등</td>
</tr>
</tbody>
</table>

자료: 한국행정연구원, 2015, 정부간 갈등 예방을 위한 법제도 정비방안
수리권 제도가 현실의 물관리에 맞지 않고 물과 하천을 관리하는 주체가 중앙정부, 지자체, 한국수자원공사 등으로 분산되어 있어 갈등 발생

- 최근 물을 기본적인 권리로 인식하고 ‘물 복지’의 개념 등장
- 개인뿐만 아니라 지역간의 물 서비스 격차를 줄이는 내용을 포함
- 물환경 불평등을 종합적으로 판단할 수 있는 지표 개발이나 현실적인 적용은 미흡한 실정

나. 주요대책

- 물환경 불평등 지표 개발 및 적용
- 물환경 서비스의 형평성 제고
- 의사결정과정 참여 확대로 물환경 갈등 사전조정

- 물환경 불평등 지표 개발 및 적용
 - 전국 지자체와 유역단위의 불평등을 평가할 수 있는 지역간 물환경 불평등을 객관적-종합적으로 판단할 수 있는 지표 개발
 - 의사결정과정 참여 확대로 물환경 갈등사전 조정

- 물환경 서비스의 형평성 제고
 - 물환경 불평등 지표 등 우선순위에 의거한 형평성 대책 마련과 대응체계 마련 구축
 - 상하수도의 보급의 경우 기존 방식의 인프라 공급보다는 소규모 급수시설 관리 강화와 같은 지역특성 맞춤 방안 마련
 - 물환경 관리자와 도시개발계획자의 긴밀한 협력을 통해 도농 간 격차 해소
다. 향후 추진 일정

- 물환경 불평등 지표 개발 및 적용(‘16∼’18)
- 우선수위에 따른 물환경 서비스의 형평성 제고 방안 마련(‘19∼’21)
- 의사결정 참여를 위한 관련 법령 및 제도 정비(‘20)

참고자료 1-5-1

- 국내 물환경 갈등사례
 - '대구취수원' 구미이전 관련 갈등사례
 - 대구와 경북 구미가 낙동강 '대구취수원' 이전이란 과제를 놓고 수년째 갈등 중
 - '09년부터 먹는물 안전을 확보하기 위해 대구시가 낙동강 상류 총액 취수장인 구미 농다물취수장으로 매곡·문산 취수장을 이전하려 하자 구미시가 '동의없이 일방적으로 추진하는 것을 찬성할 수 없다며 반발'
 - 대구시 입장: 낙동강 상류에 있는 구미공단 등에서 배출하는 유해화학물질 등에 의해 대구 시민 70%에게 수돗물을 공급하는 매곡·문산취수장의 원수가 오염될 수 있기 때문에 안전 확보를 위해 취수장을 옮겨야 한다는 입장. 1991년 폐 fullfile투사건 등 낙동강 오염사건이 지난 10년간 7차례 발생했고, 이때마다 취수중단사태를 빚는 비람에 250만 대구시민의 고통이 크다는 점을 추구 이유.
 - 구미시 입장: 대구 취수원 이전으로 구미시 도깨변, 옥성면 지역은 상수원보호구역 확대 지정으로 지역주민의 재산권이 침해당하게 되며, 신설취수원 하류에서 대구시까지 낙동강에 흐르는 물의 양이 1일 평균 95만ℓ 들어들어 수량확보에 어려움이 있을 뿐 아니라 수질 악화를 우려, 대구취수장 이전으로 인해 구미국가공단에 공업용수를 공급하는 구미취수장의 취수량이 부족이 생기며, 낙동강물로 농사를 짓는 농경지의 농업용수 공급에도 문제가 될 수 있으며 반대 입장 표명
지리산댐(함양 문정댐) 건설 관련 갤등 사례
- 지리산댐(함양 문정댐) 건설을 두고 국토부 수자원공사와 환경단체·지역주민 간 갤등이 지속되고 있음
- 정부가 부산 물 공급을 위해 '07년 댐건설 장기계획에 지리산댐 건설을 처음 계획한 이후 '12년 12월 '댐 건설 장기계획(2012~2021년)'에서 남강유역 홍수조절용으로 용도를 변경하여 지리산댐을 포함하고 건설 추진을 확정함. 이에 지역주민과 환경단체의 불신이 고조되고 있으며, 댐의 필요성 재고 및 사천지역의 침수 심화 등의 반발을 제기하고 있음
- 국토부·수자원공사 입장: 지리산댐 건설은 남강 상류지역 수해예방, 남강댐 사천만 방류량 조절, 경남 서북부 지역 물 부족 대비, 남강 중하류지역 하천환경 개선, 지리산권 관광휴양시설 개발, 농지 침수예방으로 이농현상 방지 등의 정당성을 가짐
- 지역주민·환경단체 입장: 지리산댐의 용도를 남강유역 홍수조절용으로 바꾼 것은 타당성 조사를 통과하기 위한 말 바꾸기임. 남강유역의 홍수피해의 경우 남강댐의 보강을 통해 해결할 수 있으며, 이러한 피해의 경우 지리산댐 건설문제와는 거리가 있음. 또한 지리산댐 건설로 인해 사천지역은 침수와 수몰이 더욱 가시화 될 것으로 우려되며 국가지정문화재(명승)로 지정 검토 중인 용유담 일대가 수몰됨

<table>
<thead>
<tr>
<th>연도</th>
<th>진행사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>댐건설 장기계획에 지리산댐 반영</td>
</tr>
<tr>
<td>2008</td>
<td>국토부가 '부산 물공급대책'을 내놓으면서 지리산댐 건설이 남강댐 수위 상승과 연계한 보조댐으로 거론</td>
</tr>
<tr>
<td>2009</td>
<td>예비타당성 조사가 진행되었으나 지역주민의 반발로 좌초됨</td>
</tr>
<tr>
<td>2010</td>
<td>정부는 수정안에서 지리산댐 건설을 통해 부산 물 문제 해결을 제시하였으나 타당성 조사결과 경제성이 없는 것으로 나타나 추진이 어려워짐</td>
</tr>
<tr>
<td>2011</td>
<td>지리산댐을 남강유역 홍수조절용으로 용도를 변경하여 '기후변화 대응 재난관리 개선 종합 대책'에 포함시키고 예비타당성 조사 없이 추진할 수 있도록 함</td>
</tr>
<tr>
<td>2012</td>
<td>지리산댐 건설을 '댐 건설 장기계획(2012~2021년)'에 포함하여 추진을 확정함</td>
</tr>
<tr>
<td>2014</td>
<td>전면 재검토 상황. 댐 사전검토협의회를 진행하였으나 현재까지 진행되고 있는 부분은 없으며 갤등이 지속되고있음</td>
</tr>
<tr>
<td>구분</td>
<td>분쟁 내용</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>이수</td>
<td>수리권분쟁 • 지자체의 수자원공사간의 물값 징수 문제 • 대청댐과 급강하구호의 응수문제 • 목포시와 농촌공사간의 물값문제 • 영천댐 물 사용료 입술 지자체 환원 • 광역상수도 통합정수장 건설 • 임실군의 방수리보 • 칠서정수장 상수도 추가공급 • 부산,서울,춘천 ↔ 수공 • 농산공 ↔ 수공 • 목포시 ↔ 농산공 • 영천시 ↔ 중앙정부 • 의령시 ↔ 안양시,군포시 • 전주시 ↔ 임실군 • 마산시 ↔ 청남군,함안군</td>
</tr>
<tr>
<td>수력발전</td>
<td>옥천,목포 ↔ 수공 • 동천농조 ↔ 한전 • 수리권조정</td>
</tr>
<tr>
<td>홍수피해</td>
<td>연천댐이 붕괴와 하류주민피해 • 지역주민 ↔ 댐관리자 • 홍수피해</td>
</tr>
<tr>
<td>수리재해</td>
<td>인재 내린천댐 건설 백지화 요구 • 경주 대현댐 확장 건설반대 • 안동 무한항 확장 건설반대 • 제천시 ↔ 영월군 • 합천군 ↔ 부산,경남 • 의왕시 ↔ 안양시,군포시 • 전주시 ↔ 임실군 • 마산시 ↔ 창녕군,함안국</td>
</tr>
<tr>
<td>관광품목</td>
<td>금호강의 수질보전 • 한탄강 수질오염 및 하천환경파괴 • 부안댐 상수원보호구역 지정관리 분쟁 • 섬진강 광역상수도 보호구역 지정 • 동북강 상수원보호구역 확대지정 • 사천시 사등상수원 보호구역 해제요구 • 형산강 수질오염 방지를 위한 상수원 보호구역 지정반대 • 운문산 상수원보호구역 지정 • 고양시 상수원 보호구역 단속 • 필담상수원 규제강화조치와 관련된 분쟁 • 태안 예천상수도 취수장 일원 상수원 보호구역 지정반대 • 진주 상수원 보호구역 관리협조 • 목포시 상수원보호구역 지정 • 포항시의 경주군 지하수 채수 계획과 경주군의 반대 • 포항 ↔ 경주군</td>
</tr>
</tbody>
</table>

○ 국내 물분쟁 주요사례(환경부, 2012, “물배분과 수리권 제도”)
1-6. 물관리 정책 통합·조정 지원

가. 현황 및 문제점

- 현재 우리나라의 물관리 법령체계는 물확보, 물환경 보전, 재해, 지표수, 지하수 등 각각의 목적별로 제정된 개별 법률251)에 의해 거버넌스가 분산되어 있어 통합적·원칙적 차원에서 거버넌스 법적 체계가 미흡
- 향후 기후변화 등 물관련 위험대응과 물복지에 대한 기대를 온전히 충족시킬 수 있도록 통합 물관리 체계 필요

나. 주요대책

- 단기 (현행) ‘물관리협의회’를 중심으로 부처간 협업체계 강화
- 장기 (통합) 물관리의 법적제도적 기반 마련

- ‘물관리협의회’ 활성화

- 물의 효율적인 관리를 위해 국무조정실 주관으로 ‘물관리협의회’를 신설(‘15.9)하여 가뭄 대책 수립 및 수자원의 통합적 관리방안 등 물관리 현안을 점검하고 조정 중
- 향후 관계부처(환경부, 국토부, 농식품부, 기상청, 안전처 등) 차관급으로 구성된 협의회와 업무담당자로 구성된 실무협의회를 주기적으로 개최하는 등 협의체 운영을 활성화하여 물의 효율적 이용·관리 추진
- 또한, 관련 정보 및 계획 등을 지속적으로 공유·연계하여 각 부처가 개별적으로 수행하고 있는 물관리 정책의 유기적 통합·조정 강화

251) 수질 및 수생태계 보전법, 국토기본법, 하천법, 지하수법, 댐법, 수도법, 농어촌정비법, 전원개발촉진법, 소하천정비법, 온천법, 공유수면관리법 등
통합 물관리의 법적제도적 체계 마련

각 부처와 기관으로 분산·다원화된 물관리 체계를 통합하기 위해 조직 체계 개편, ‘물관리 기본법’ 제정 및 국가물관리위원회 설립 등을 다각적으로 검토하고 이에 대한 합의 형성에 적극 협력

물관리 조작기관이 일원화 되면 각종 법률제도, 다원화된 수리권의 및 소속·산하기관들의 통합을 효율적으로 달성할 수 있어 근원적인 해결이 가능한 최선의 방안이나,
- 당면한 문제를 시급하게 해결하기 어렵고, 부처간 협의를 넘어 다양한 내·외부적 요인에 따라 실현가능성이 좌우된다는 한계가 있음

물 관련 정책의 입안·실행을 담당하는 각 부처의 책임과 역할을 명확히 하고 조정할 수 있는 법적 장치로 ‘물관리기본법’의 제정 필요성이 지속적으로 제기되어 온 바, 기본법을 제정할 경우 다음 사항 반영
 - 항후 기후변화 등 물관련 위험대응과 물복지에 대한 기대를 온전히 충족시킬 수 있는 물관리 기본이념, 물관리 관계 부처 및 기관의 분명한 역할과 책임규정, 통합적인 국가물관리기본계획 등에 대한 규정 포함
 - 현재 물관리의 가장 큰 문제점은 1960년대 설정된 부처별 수량관리 권한이 고착화된 것이므로 새로운 물수요를 반영하여 효율적·통합적으로 관리·조정하여 최적화 필요
 - 상하류 지역 간의 수리권 문제, 유역변경 등의 문제로 발생하고 있는 물분쟁 해결을 위해 원칙과 기준을 마련하여 물분쟁 조정 능력 제고
 - 이수 및 치수 분야에 편향되어 온 수량관리로 인한 이해갈등을 해결하기 위해 수질·수생태계와 수량관리의 연계성 강화 필요

다. 향후 추진 일정

- 물관리협의회 운영 활성화(‘16년~)
- 물관리기본법 제정, 조직 개편 등 통합 물관리 체계 마련(‘17년~)
1-7. 국제 물환경 관리 협력체계 구축

가. 현황 및 문제점

물관리 관련 국제회의는 시민단체, 연구소 등 다양한 이해관계자로 참여가 확대되고 있으나 정부기관만으로는 대응에 한계
- 물 관련 국가간 국제회의에는 정책 사례홍보 및 행사유치 활동 등 단편적 접근방식 위주로 참여
- 국가간 물관리 수준의 격차해소, 관련 교육실시 등 전 지구적 물 환경 문제에 대한 공동 대응노력 미흡

홍수, 가뭄, 수질, 식수문제 등의 전 지구적 물 관리 문제에 대응하기 위한 국가 간 물관리 수준의 격차해소, 관련 교육실시 등 전 지구적 노력 필요
- 물환경 관리 정책 추진경험 전수를 위한 국제환경교육 지속 추진 중이나 확대 및 내실화 요구됨
- '14년 환경부와 산업통상자원부의 부처간 협력사업으로 개최된 글로벌 그린 허브 코리아의 국내 환경분야 기업 수주지원을 위한 상담회에서 수처리분야 총 425건, 239억 달러 상담, 45억 달러 계약 협의

<table>
<thead>
<tr>
<th>연도</th>
<th>교육과정명</th>
<th>기간</th>
<th>교육주제</th>
<th>참가 인원</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>제9차 국제환경정책 연수과정(ITCEP)</td>
<td>5.6 ~ 5.16 (11일간)</td>
<td>기후변화 대응을 위한 물환경 관리</td>
<td>15개국 18명</td>
</tr>
<tr>
<td></td>
<td>제12차 국제환경기술 전문교육과정(ISCET)</td>
<td>11.26 ~ 12.4 (9일간)</td>
<td>기후변화대응을 위한 물환경 관리</td>
<td>10개국 16명</td>
</tr>
<tr>
<td>2014</td>
<td>인도네시아 지속가능 발전과정</td>
<td>3.24 ~ 3.28 (5일간)</td>
<td>하천 수질관리 개선 및 모니터링 시스템 구축방안</td>
<td>인도네시아 15명</td>
</tr>
<tr>
<td></td>
<td>제14차 국제환경기술 전문교육과정(ISCET)</td>
<td>9.23 ~ 10.1 (9일간)</td>
<td>상하수도 관리, 폐자원 관리 및 에너지화</td>
<td>4개국 7명</td>
</tr>
</tbody>
</table>

표 1-7-1. 물환경관련 국제환경교육과정 추진현황('13~'15)
년도	교육과정명	기간	교육주제	참가 인원
2015	아제르바이잔 환경 및 물관리 역량강화 과정	11.23 ~ 12.6 (14일간)	환경 및 물관리	아제르바이잔 10명
베트남 환경관리 정책과정	7.13 ~ 7.17 (5일간)	물환경, 대기	베트남 15명	
지속가능한 물환경 관리 정책과정	7.16 ~ 8. 5 (21일간)	지속가능한 물환경 관리정책	아시아, 아프리카 10개국 19명	
제16차 국제환경기술전문 교육과정(ISCET)	9.15 ~ 9.23 (9일간)	대기, 물환경	5개국 15명	

자료: 국립환경인력개발원, 2015, 2015년도 국제환경교육 기본계획(안)

구분	합계	수처리	폐기물/대기	NGV	신재생
상담건수	1,566	425	350	127	664
상담액(억달러)	1,614	239	162	15	1,198
계약협의액(억달러)	102	45	23	3	31

자료: 한국환경산업기술원, 2014, 글로벌 그린 허브 코리아

남북 공유하천의 이용·개발로 하류지역의 수질 및 생태계에 영향을 미치고 있으나 조율 시스템 부재

- 북한강 수계 임남댐 건설로 화천댐의 유입량이 감소하여 건설 직후 수질은 약 2년간 COD, T-N, T-P 등의 월별 수질항목이 급격히 악화되었으며 건설 후 수질변화의 변동 폭이 컸다[252]
- 임진강 및 북한강 내 댐의 예고 없는 방류로 재산피해 및 인명피해 발생[253]

[252] 김익재 외, 2010, 공유 하천 물안보 체계 구축을 위한 협력 방안, 한국환경정책평가연구원
[253] '09년 북한 황강댐 무단방류로 6명 실종, 약 1억 3천만원의 재산피해 발생 등(KEI, 2010)
제 2차 물환경관리 기본계획 부록

<table>
<thead>
<tr>
<th>등급</th>
<th>하천명</th>
<th>유역면적(km²) (남한측면적, %)</th>
<th>유로연장(km) (남한측연장)</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td>국가하천</td>
<td>북한강</td>
<td>10,124.4 (7,787.0, 76.9)</td>
<td>291.30 (158.82)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>임진강</td>
<td>8,811.7 (3008.7, 37.1)</td>
<td>244.0 (91.0)</td>
<td></td>
</tr>
<tr>
<td>지방하천</td>
<td>한탄강</td>
<td>3,075.8 (2,085.0, 67.8)</td>
<td>141.0 (85.26)</td>
<td>임진강 유입</td>
</tr>
<tr>
<td></td>
<td>강화남대천</td>
<td>414.7 (336.3, 80.4)</td>
<td>39.70 (20.60)</td>
<td>한탄강 유입</td>
</tr>
<tr>
<td></td>
<td>수입천</td>
<td>320.5 (203.0, 63.3)</td>
<td>50.29 (36.10)</td>
<td>파로호 유입</td>
</tr>
<tr>
<td></td>
<td>인북천</td>
<td>929.9 (754.5, 81.1)</td>
<td>74.30 (49.20)</td>
<td>소양강 유입</td>
</tr>
<tr>
<td></td>
<td>사천</td>
<td>350.6 (45.6, 13.0)</td>
<td>30.0 (18.5)</td>
<td>소양강 유입</td>
</tr>
</tbody>
</table>

자료 : 안종서 외(2011), "남북공유하천 북한강의 물이용 문제점 및 수리권 추정(I)", 한국물환경학회지, 한국물환경학회, 제44권, 제4호, 6, pp. 306

남북의 협력 하에 한강하구역 보호프로그램 마련 시급

- 한강 하구는 남북 공동수역으로 국내에서 유일하게 남아있는 자연하구로서 수질문제를 포함한 남북환경협력의 모델을 제시할 수 있는 장으로 활용 가능

북한의 소극적 대응으로 남북간 물환경 협력 진행 어려움

- '00년부터 남북간 공유 하천 갈등을 완화시키고자 여러 차례 북한과 협의 노력하였으나 실질적인 대책 마련을 위한 구체적 논의 및 이행은 이루어지지 못함(254)

254) '00년 제2차 남북정상회의단에서 임진강 공동수해방지사업에 합의함으로써 본격적인 협력 본위기가 마련되어 이후 다수의 임진강수해방지협의회, 남북경제협력위원회를 중심으로 임진강수해방지에 관한 합의서 토의 및 남북 공동 현지조사, 이를 위한 장비 제공과 측정자료 제공 등이 논의되어왔으나 실질적인 결과물은 없었으며 '07년 4월 평양에서 제13차 남북경제협력추진위원회에서 설비자재 제공과 현지방문 및 기술지원 협력 방안 합의서를 문서교환 방식으로 채택하고자 하였으나 불발되었음(KEI, 2010).
남북간 환경협력사업은 UNDP/UNEP와 같은 국제기구를 통한 간접적 형태로 추진되었으며 성과는 미흡
- UNEP의 ‘2003 북한환경생태보고서’에서 제안한 16개 환경협력 우선 사업 중 4개가 수질관련 사업으로 향후 좀 더 실질적이고 직접적인 협력 사업의 발굴이 요구됨

나. 주요대책

- 물환경정책 해외확산 지원 방안 확대
- 남북간 물환경에 대한 협조체계 마련

물환경정책 해외확산 지원 방안 확대
- Rio+30(‘22), UN 새천년선언 목표연도(‘25) 등 대비 전략 수립
 - 물 관련 국적회의 및 물환경 정책 해외확산 지원기능 전담 기구 설립
- 국제 물환경 교육 확대 및 강화
 - 참여국 수요를 반영한 맞춤형 연수교육 프로그램 마련
 - 실효 사례 및 위기극복 경험을 포함한 다양한 교육 컨텐츠 개발
- 국제기구(KOICA 등), 관련기관과의 협력 강화
 - 아태지역 물환경 교육 센터 건립 추진(※ 참고자료 1-7-1: UNESCO IWSSM 연구교육센터)
- UNEP 아태지역 사무소와 협력하여 아시아 태평양 지역 수준의 물 이슈와 관리 기술 교육
- 아시아태평양 지역에서 선진 물관리 국가로서의 이미지 확립을 통해 우리나라 물관리정책의 해외확산 기반 마련

255) 대동강통합수질오염모니터링시스템 구축, 물 보전 워크샵, 도시 배수 및 순환 처리시스템 시범사업, 압록강오염방지 사업(UNEP,2003)
남북 간 물환경에 대한 협조체계 마련

- 북한강, 입진강 수질 및 수생태계 보전을 위한 유지유량 확보 및 수질 악화 시 방류량 조정 협조체계 구축
- 한강 하구 보전을 위한 공동조사·연구 및 관리 프로그램 개발 추진
- 북한 물환경 문제 해결을 위한 환경협력 사업 발굴 및 기술지원
 - 북한이 UNEP(2003) 또는 PEMSEA(2005)\(^{256}\)에 제안한 수질분야 지원 사업 목록에 근거하여 수질분야 협력사업 발굴

다. 향후 추진 일정

- 물환경정책 해외확산 지원 방안 확대(계속)
 - 물환경정책 해외확산 지원을 위한 전문기구 설립 추진
 - 전문기구 설립 타당성 조사
 - ‘한국국제 물연구소(KIWI, 가칭)’ 설립
 - 아태지역 물교육 센터 건립 추진
- 남북 물환경에 대한 협조체계 마련(‘17~)

\(^{256}\) PEMSEA는 GEF/UNDP/IMO의 동아시아 지역환경협력프로그램(Partnerships in Environmental Management for the Seas of East Asia)이며 북한이 PEMSEA에 제안한 수질분야 협력사업은 단천지역 수질개선사업, 압록강 유역환경 관리계획, 두만강 수질관리, 청천강 유역관리계획, 주요항만 하수처리장망력 개선사업, 원산지역 통합환경 관리계획, 대동강유역관리계획, 남포 연안통합관리 시범사업, 대동강 생태환경을 위한 토지환경 종합계획이 다.(PEMSEA, 2005)
참고자료 1-7-1

- UNESCO i-WSSM 연구교육센터 추진현황(국토부 추진중)

○ 추진경위
- 물안보 통합적인 협력 필요성 제시(VIP, '09.9.23, 제64차 UN총회 기조연설)
 - 효과적인 국제협력 체계의 구축을 위해 특화되고 통합된 물관리 협력방안 추진을 제안
- 물 안보 및 지속가능한 물리 연구교육센터 유치제안서 제출(11.12월)
 - 물안보 및 지속가능한 성장의 실현을 위한 연구·교육·정보 허브가 융합된 국제연구 및 교육
 센터를 K-water연구원 내에 설립
- 연구교육센터(i-WSSM) 설립 승인(제37차 유네스코 총회, '13.11월)
 - (위 차) 연구·교육 인프라는 구축되어있는 K-water연구원 내
 - (지 위) 유네스코와 독립된 기구로서 독립된 법인격
 - (기능) 개도국 대상 물관련 공동연구 추진 및 교육 지원
 - (재원) 국토교통부와 한국수자원공사의 금전 및 현물지원

○ i-WSSM 센터개요
- 설립목적
 - 국제사회에서 물 안보 및 지속가능한 물 관리에 대한 우리나라의 이니시티브 공고화
 - 국가간 조약에 근거한 국제기구로 발전시키기 목표 설정, 국제적 자산 확보
- 지위 및 공간적 위치
 - K-water연구원 부지 내 독립적인 글로벌 연구센터 형태로 운영
 - 전시에는 별도의 신축건물 없이 연구원 부지내 사무공간 활용
- 조직 및 인력구성
 - (조직) 센터장, 사무국장, 3개팀(기획·총괄팀, 연구개발팀, 교육출판팀)으로 구성
 - (인력) 소수조직으로 출범하여 사업 확장정도에 따라 단계적 인원 확대(최종단계 20여명 근무)
- 업무범위
 - (연구분야) 수자원관리, 물안보 및 수자원의 지속가능 관리, 에너지 생산 및 관련 인프라
 운영관리, 생태 수문 및 녹색성장
 - (교육분야) 암과 하천시스템 및 통합수자원관리, 상하수도 인프라 건설 및 운영관리, 물을
 이용한 녹색에너지 생산 및 인프라 운영관리, 개도국의 수자원 산업 육성지원(경영 및 정책
 분야)
- 센터 운영계획(안)

<table>
<thead>
<tr>
<th>구분</th>
<th>설립초기</th>
<th>설립중기</th>
<th>운영활성화</th>
</tr>
</thead>
<tbody>
<tr>
<td>시 기</td>
<td>2016년 설립 직후</td>
<td>2018년 사회호 홍보관 건립시</td>
<td>송산그린시티 센터건물 건립시</td>
</tr>
<tr>
<td>규모</td>
<td>상근인력 10명</td>
<td>상근인력 20명</td>
<td>상근인력 20명</td>
</tr>
<tr>
<td>운영장소</td>
<td>대전 연구원내 (기존 사무공간 활용)</td>
<td>사회호 홍보관(사무국) 대전 연구원(연구/교육팀) 이원화</td>
<td>송산그린시티 i-WSSM 독립건물</td>
</tr>
</tbody>
</table>

○ 진행경과
- 유네스코 총회에서 연구교육센터(i-WSSM) 설립 승인(‘13.11) 이후 후속 업무 자연에 대하여, 유네스코 한국대표부의 현황 점의
 - ‘주국제연합교육과학문화기구 대한민국대표부’가 설치 자연 사유, 추진현황 및 향후계획 제출 요청(주국제연합교육과학문화기구 대한민국대표부-562호, ‘15.3)
 - K-water는 i-WSSM의 설립절차, 운영계획(안)을 관계부처 협의를 거쳐 국토부에 제출, 송산그린시티내 국제연구교육센터 ’17년 초 착공 예정
2. 과학·기술 고도화

<table>
<thead>
<tr>
<th>종전 대책</th>
<th>2025 계획</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 수생생물 보호기준 미비</td>
<td>• 환경기준 선진화</td>
</tr>
<tr>
<td>• BOD·COD 중심 유기물질 관리</td>
<td>• TOC 목표기준 설정</td>
</tr>
<tr>
<td>• 모니터링 및 데이터 관리의 과학화</td>
<td>• 물환경 정보 통합관리 및 의사결정 시스템 구축</td>
</tr>
<tr>
<td>• 물환경 연구개발 로드맵 작성 및 연구 네트워크 구축</td>
<td>• 물환경 통합 R&D 추진</td>
</tr>
</tbody>
</table>

2-1. 수질 및 수생태계 환경기준 선진화

가. 현황 및 문제점

- 하천과 호소의 수질특성 구분 불명확하나 하천과 호소로 구분된 수질환경 기준 적용 중
 - '83년부터 일본의 하천·호소로 구분된 환경기준을 인용하여 수질환경기준 설정(※ 참고자료 2-1-1: 하천 및 호소 수질환경기준 변천과정)
 - 일본을 제외한 대부분의 국가에서는 지표수 또는 하천수로 단일기준 적용257)
 - 동일한 하천에 하천과 호소구간이 연속되거나 동일지점에 하천과 호소의 수질특성이 변가아 나타남
- 유사한 수질이 적용되는 기준에 따라 수질등급이 달라져 수질정책 목표 설정 및 추진 시 혼선 초래

257) 국외사례 참고
<표 2-1-1> 하천 호수 수질환경기준(Ⅰa)등급 기준 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>하 천</th>
<th>호 소</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td>총인(mg/L) I등급</td>
<td>0.02</td>
<td>0.01</td>
<td>2배</td>
</tr>
<tr>
<td>부유물질(mg/L)</td>
<td>25</td>
<td>1</td>
<td>25배</td>
</tr>
<tr>
<td>Chl-a(mg/m²)</td>
<td>없음</td>
<td>5</td>
<td>3등급 25</td>
</tr>
<tr>
<td>COD(mg/L)</td>
<td>2</td>
<td>2</td>
<td>2016년 폐지</td>
</tr>
<tr>
<td>TOC(mg/L)</td>
<td>1</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>총질소(mg/L)</td>
<td>없음</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

- 4대강 사업('09~’12)이후 환경변화로 COD, TOC 조류농도 등을 수질관리지표로서 관리가 필요하다. 반영 미비
- 물 환경의 안전성 확보 및 관리를 위해 사람의 건강보호항목을 지속 확대 중이나 선진국 수준(258)에는 미흡한 실정(※ 참고자료 2-1-3: 미국 EPA 사람의 건강보호 환경기준, 참고자료 2-1-4: EU 수질환경기준)
- ’78년 시안 등 7개 항목을 최초 도입한 이후 지속적으로 추가하여 현재 20개 항목을 설정
- 당초 계획에서 ’15년까지 사람의 건강보호항목을 30개로 확대하고자 하였으나 예산부족 등으로 달성 어려움
- 건강보호 예비항목 결정 및 관리, 모니터링 자료부적, 위험성 평가방법 등 관리체계 미흡

수생태계까지 물환경 관리범위가 확대되었으나 수생생물을 보호하기 위한 수생생물보호기준 부재
- ’06년 12월 환경정책기본법의 수질환경기준수질 및 수생태계 환경기준으로 변경하였으나 장기 중심의 건강보호항목만 설정되어 있는 실정

258) 주요 선진국의 건강보호 환경기준 항목은 일본이 27개(‘11), EU 39개(‘12), 미국 124개(‘13)
수생생물독성 측면에서 중요한 물질인 알루미늄, 암모니아, 염소 등에 대한 환경기준 누락(※ 참고자료 2-1-5: 미국 EPA 수생생물보호 환경기준, 참고자료 2-1-6: EU 수생생물보호 환경기준, 참고자료 2-1-7: 일본 수생생물보호 환경기준)

(표 2-1-2) 미국 EPA의 일부항목(Cu, Ni, Zn)의 수생생물보호기준과 사람의 건강보호기준 비교

<table>
<thead>
<tr>
<th>EPA 수질기준</th>
<th>Freshwater Criteria(µg/L)</th>
<th>Human Health Criteria(µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu (@hardness 100 mg/L)</td>
<td>CCM 13</td>
<td>CCC 9</td>
</tr>
<tr>
<td>Ni</td>
<td>470</td>
<td>52</td>
</tr>
<tr>
<td>Zn</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

- ’13년 10월 수생생물보호기준 업무지침을 마련하여 대상후보물질 설정 및 검토 절차 등을 정하였으나 구체적 절차 미비
- 폐수시설 등에서 배출되는 중금속 등 유해물질에 대한 정책적 목표의 부재로 배출허용기준 등 관리수단과의 연계성이 떨어진 기준이나 건강보호 기준 수준으로 한정

나. 주요대책

통합 생활환경기준 마련
사람의 건강보호항목 확대
수생생물보호기준 도입 및 확대
TOC 목표기준 도입 및 기준 검토

통합 생활환경기준 마련

생활환경기준 통합 조정 및 적용
수질환경기준 내 유사한 성격의 오염항목은 대표성있는 항목으로 통합
유기물질의 지표인 BOD, COD, TOC는 대표성 있는 항목 1개로 일원화하고, 영양물질도 적정성을 고려하여 대체항목 검토
- 최근 변화된 수질과 경제적·기술적 여건 등을 고려하여 등급값을 조정

 önemli 내용

사람의 건강보호항목 확대

○ 건강보호항목 지정 관리체계 확립 및 선진국 수준으로(30개) 확대
 - 사람의 건강보호항목 지정 및 관리 지침 마련
 - 주요 유해물질 대상 정밀오염조사 및 위해성 평가 실시, 예비 항목 및 기존 항목에 대한 모니터링, 데이터베이스 구축 등 관리체계 확립
 - 건강보호항목 선진국 수준까지 단계적 확대
 • 20개 항목(‘12) → 25개 항목(‘20) → 30개 항목(‘25)

수생생물보호기준 도입 및 확대

○ 수생생물보호기준에 대한 구체적인 기준안 도출·적용, 정기적인 재검토 등에 대한 절차 마련 및 기준 설정
 - 수생생물보호기준은 공공수역에서의 수생생물의 생존·생장·번식 등을 보장할 수 있는 수준으로 설정

<table>
<thead>
<tr>
<th>계획 수립</th>
<th>후보항목 조사</th>
<th>준거치 도출</th>
<th>기준안 및 적용방법 마련</th>
<th>환경기준 설정</th>
</tr>
</thead>
<tbody>
<tr>
<td>업무지침 마련</td>
<td>모니터링 배경농도 조사</td>
<td>독성자료 수집 생물염양 조사</td>
<td>수생대계 평가 지역융수 평가</td>
<td>법제화 배출관리 연계 주기적 평가</td>
</tr>
<tr>
<td>도입계획 수립</td>
<td>위해성 평가 우선 순위 선정</td>
<td>BLM* 적용 준거치** 도출</td>
<td>수계별 목표 설정 평가방법 개발</td>
<td></td>
</tr>
<tr>
<td>업무 총괄</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* BLM(Biotic Ligand Model) : 중금속이 수생생물체에 붙을 때 영향을 미치는 pH, 다른 이온, 유기물 등을 고려한 중금속독성값 산출(현장적용)
** 준거치 : 수생생물에 성장이나 생존에 영향을 미치는 오염물질의 농도(기준안)

〈그림 2-1-1〉 수생생물 보호기준 마련 주요 절차

- 국제적으로 정립된 과학적 근거 및 정보, 국내 생물종의 생태적 특성, 수체별 수질 특성 등을 반영하여 기준값 설정

수생생물보호기준 도입 환경정책기본법시행령 개정 및 항목 확대
TOC 목표기준 도입 및 기준 검토

- 2021년까지 하천 수질 목표기준에 TOC를 도입하여 기존 BOD 중심의 유기물질 관리의 한계를 극복하고 수질변화에 신속하고 정확하게 대응하는 사전예방적 물관리를 추진
- TOC 항목의 등급값과 목표기준은 최근의 수질변화추이와 기술적 여건, 물이용 목적 등을 고려하여 검토·조정
- 기존 대표항목인 BOD는 2021년 이후에도 지속적으로 측정·관리하여 유기물질 중 생분해성 물질의 비중 파악 등에 활용

다. 향후 추진 일정

- 통합 생활환경기준 마련(~’20)
- 사람의 건강보호항목 확대(~’25)
- 수생생물보호기준 도입(~’18)
참고자료 2-1-1

<table>
<thead>
<tr>
<th>제 개정 일자</th>
<th>관련법</th>
<th>등급</th>
<th>생활환경기준 항목수(항목)</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td>제</td>
<td>개정 일자</td>
<td>관련법</td>
<td>등급</td>
<td>생활환경기준 항목수(항목)</td>
</tr>
<tr>
<td>1963.11.5</td>
<td>공해 방지법</td>
<td>미설정</td>
<td>하천</td>
<td>- 공해안전기준 (규제기준)</td>
</tr>
<tr>
<td>1978.7.1</td>
<td>환경 보전법</td>
<td>4 등급</td>
<td>4개(pH, BOD₅, DO, 대장균군)</td>
<td>- 일본 기준 차용</td>
</tr>
<tr>
<td>1981.1.7</td>
<td>환경 보전법</td>
<td>4 등급</td>
<td>5개(pH, COD₅₇, BOD₅, DO, 대장균군수)</td>
<td>- COD₅₇ 추가</td>
</tr>
<tr>
<td>1983.8.1</td>
<td>환경 보전법</td>
<td>5 등급</td>
<td>6개(pH, BOD₅, COD₅₇, SS, DO, 대장균군수)</td>
<td>- 단일 기준표 비고란에서 하천 및 호수 분리</td>
</tr>
<tr>
<td>1989.1.5</td>
<td>환경 보전법</td>
<td>5 등급</td>
<td>6개(pH, BOD₅, COD₅₇, SS, DO, 대장균군수)</td>
<td>- 하천과 호수 기준표 분리</td>
</tr>
<tr>
<td>1991.2.2</td>
<td>환경정책 기본법</td>
<td>5 등급</td>
<td>5개(pH, BOD₅, SS, DO, 대장균군수)</td>
<td>- 호수에 총인, 총질소 설정</td>
</tr>
<tr>
<td>2006.12.4</td>
<td>환경정책 기본법</td>
<td>7 등급</td>
<td>6개(pH, BOD₅, SS, DO, 총대장균, 분원성대장균, 클로로필-a)</td>
<td>- 등급 조정</td>
</tr>
<tr>
<td>2009.7.7</td>
<td>환경정책 기본법</td>
<td>7 등급</td>
<td>8개(pH, BOD₅, COD₅₇, SS, DO, 총대장균, 클로로필-a)</td>
<td>- 분원성 대장균추가 (하천,호수)</td>
</tr>
<tr>
<td>2012.11.27</td>
<td>환경정책 기본법</td>
<td>7 등급</td>
<td>9개(pH, BOD₅, COD₅₇, TOC, SS, DO, 총대장균, 클로로필-a)</td>
<td>- 하천에 COD₅₇, 총인 추가</td>
</tr>
<tr>
<td>2015.12.31</td>
<td>환경정책 기본법</td>
<td>7 등급</td>
<td>10개(pH, COD₅₇, SS, TOC, DO, 총대장균, 클로로필-a)</td>
<td>- TOC 추가</td>
</tr>
</tbody>
</table>

- 하천 및 호수 수질환경기준 변천과정
- 수질환경기준은 1978년 환경보전법에 4개 항목(pH, BOD₅, DO, 대장균군)으로 처음 도입되었으며, 1983년 일본의 하천,호수 환경기준을 인용하여 유기물질의 기준을 하천 BOD, 호수 COD로 구분하고 각각 환경기준(하천 6개, 호수 5개)을 정한 이후 점차 항목이 늘어나 현재 하천 9개, 호수 10개 항목을 환경기준으로 설정하고 있음
건강보호항목 변천과정

<table>
<thead>
<tr>
<th>제·개정 일자</th>
<th>관련법</th>
<th>항목수</th>
<th>건강보호항목(단위: ng/L)</th>
<th>비 고</th>
</tr>
</thead>
</table>
| 1978.7 | 환경보전법 | 9 | 카드뮴(Cd) : 0.01 ng / L 이하
비소(As) : 0.05 ng / L 이하
시안(CN) : 검출되어서는 안됨
총수은(Hg) : 검출되어서는 안됨
알킬수은 : 검출되어서는 안됨
유기인 : 검출되어서는 안됨
면(Pb) : 0.1 ng/L 이하
6기크롬(Cr6+) : 0.05 ng/L 이하
포리크로리데이티드비페닐(PCB) : 검출되어서는 안됨 | |
| 1991.2 | 환경보전법 | 8 | 알킬수은 삭제
총수은 ⇒ 수은 | |
| 2006.12 | 환경정책 기본법 | 17 | <추가>음이온 계면활성제(ABS): 0.5 ng/L 이하
<강화>
- 납 0.1 → 0.05 ng/L이하
- 카드뮴 0.01 → 0.005 ng/L이하
<추가>
| | | | 시압화탄소 | 0.004 이하 |
| | | | 1,2-디클로로에테탄 | 0.03 이하 |
| | | | 테트라클로로에틸렌(PCE) | 0.04 이하 |
| | | | 디클로로에테탄 | 0.02 이하 |
| | | | 벤젠 | 0.01 이하 |
| | | | 클로로포름 | 0.08 이하 |
| | | | 디에틸헥실프탈레이트(DEHP) | 0.008 이하 |
| | | | 안티몬 | 0.02 이하 |
| | | | - 불검출 ⇒ 검출되어서는 아니됨(검출한 계 명시) | |
| 2012.10 | 환경정책 기본법 | 20 | <추가> | |
| | | | 1,4-디아이세인 | 0.05 이하 |
| | | | 포름알데히드 | 0.5 이하 |
| | | | 혈아클로로벤젠 | 0.00004 이하 |

참고자료 2-1-2
참고자료 2-1-3

미국 EPA 사람의 건강보호 환경기준

- 미국의 EPA에서는 사람의 건강보호 환경기준을 124개의 항목에 대하여 나타내고 있음

<table>
<thead>
<tr>
<th>항 목</th>
<th>기준값 (㎍/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>물 및 어류 섭취시</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>670</td>
</tr>
<tr>
<td>Acrolein</td>
<td>6</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>0.051</td>
</tr>
<tr>
<td>Aldrin</td>
<td>0.000049</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>.*</td>
</tr>
<tr>
<td>alpha-BHC</td>
<td>0.0026</td>
</tr>
<tr>
<td>alpha-Endosulfan</td>
<td>62</td>
</tr>
<tr>
<td>Aluminum pH 6.5-9.0</td>
<td>.*</td>
</tr>
<tr>
<td>Anthracene</td>
<td>8,300</td>
</tr>
<tr>
<td>Antimony</td>
<td>5.6</td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.018</td>
</tr>
<tr>
<td>Asbestos</td>
<td>7 million fibers/L</td>
</tr>
<tr>
<td>Barium</td>
<td>1,000</td>
</tr>
<tr>
<td>Benzene</td>
<td>2.2</td>
</tr>
<tr>
<td>Benzidine</td>
<td>0.000086</td>
</tr>
<tr>
<td>Benzo(a) Anthracene</td>
<td>0.0038</td>
</tr>
<tr>
<td>Benzo(a) Pyrene</td>
<td>0.0038</td>
</tr>
<tr>
<td>Benzo(b) Fluoranthene</td>
<td>0.0038</td>
</tr>
<tr>
<td>Benzo(k) Fluoranthene</td>
<td>0.0038</td>
</tr>
<tr>
<td>Beryllium</td>
<td>4**</td>
</tr>
<tr>
<td>beta-BHC</td>
<td>0.0091</td>
</tr>
<tr>
<td>beta-Endosulfan</td>
<td>62</td>
</tr>
<tr>
<td>Bis(2-Chloroethyl) Ether</td>
<td>0.030</td>
</tr>
<tr>
<td>Bis(2-Chloroisopropyl) Ether</td>
<td>1,400</td>
</tr>
<tr>
<td>Bis(2-Ethylhexyl) Phthalate</td>
<td>1.2</td>
</tr>
<tr>
<td>Bromoform</td>
<td>4.3</td>
</tr>
<tr>
<td>Butylbenzyl Phthalate</td>
<td>1,500</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5**</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>0.23</td>
</tr>
<tr>
<td>Chlordane</td>
<td>0.00080</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>130</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>0.40</td>
</tr>
<tr>
<td>Chloroform</td>
<td>5.7</td>
</tr>
<tr>
<td>Chlorophenoxy Herbicide(2,4-D)</td>
<td>100</td>
</tr>
<tr>
<td>항 목</td>
<td>기준값 (μg/L)</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Chromium(III)</td>
<td>100 (Total chromium)**</td>
</tr>
<tr>
<td>Chromium(III)</td>
<td>100 (Total chromium)**</td>
</tr>
<tr>
<td>Chromium(VI)</td>
<td>100 (Total chromium)**</td>
</tr>
<tr>
<td>Chrysene</td>
<td>0.0038</td>
</tr>
<tr>
<td>Copper</td>
<td>1,300</td>
</tr>
<tr>
<td>Cyanide</td>
<td>140</td>
</tr>
<tr>
<td>Dibenzo(a,h)Anthracene</td>
<td>0.0038</td>
</tr>
<tr>
<td>Dichlorobromomethane</td>
<td>0.55</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>0.000052</td>
</tr>
<tr>
<td>DiethylPhthalate</td>
<td>17,000</td>
</tr>
<tr>
<td>DimethylPhthalate</td>
<td>270,000</td>
</tr>
<tr>
<td>Di-n-ButylPhthalate</td>
<td>2,000</td>
</tr>
<tr>
<td>Dinitrophenols</td>
<td>69</td>
</tr>
<tr>
<td>Endosulfan Sulfate</td>
<td>62</td>
</tr>
<tr>
<td>Endrin</td>
<td>0.059</td>
</tr>
<tr>
<td>Endrin Aldehyde</td>
<td>0.29</td>
</tr>
<tr>
<td>Ether, Bis(Chloromethyl)</td>
<td>0.00010</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>530</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>130</td>
</tr>
<tr>
<td>Fluorene</td>
<td>1,100</td>
</tr>
<tr>
<td>gamma-BHC(Lindane)</td>
<td>0.98</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>0.000079</td>
</tr>
<tr>
<td>Heptachlor Epoxide</td>
<td>0.000039</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>0.00028</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>0.44</td>
</tr>
<tr>
<td>Hexachlorocyclo-hexane-Technical</td>
<td>0.0123</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>40</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>1.4</td>
</tr>
<tr>
<td>Ideno(1,2,3-cd) Pyrene</td>
<td>0.0038</td>
</tr>
<tr>
<td>Isophorone</td>
<td>35</td>
</tr>
<tr>
<td>Manganese</td>
<td>50</td>
</tr>
<tr>
<td>Mercury (Methylmercury)</td>
<td>-</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>100</td>
</tr>
<tr>
<td>Methyl Bromide</td>
<td>47</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>4.6</td>
</tr>
<tr>
<td>Nickel</td>
<td>610</td>
</tr>
<tr>
<td>Nitrates</td>
<td>10,000</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>17</td>
</tr>
<tr>
<td>Nitrosamines</td>
<td>0.0008</td>
</tr>
<tr>
<td>항 목</td>
<td>기준값 (µg/L)</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>물 및 어류 섭취시</td>
</tr>
<tr>
<td>Nitrosodibutylamine</td>
<td>0.0063</td>
</tr>
<tr>
<td>Nitrosodiethylamine</td>
<td>0.0008</td>
</tr>
<tr>
<td>Nitrosopyrrolidine</td>
<td>0.016</td>
</tr>
<tr>
<td>N-Nitrosodimethylamine</td>
<td>0.00069</td>
</tr>
<tr>
<td>N-Nitrosodi-n-Propylamine</td>
<td>0.0050</td>
</tr>
<tr>
<td>N-Nitrosodiphenylamine</td>
<td>3.3</td>
</tr>
<tr>
<td>Nutrients</td>
<td></td>
</tr>
<tr>
<td>Pentachlorobenzene</td>
<td>1.4</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>0.27</td>
</tr>
<tr>
<td>pH</td>
<td>5-9</td>
</tr>
<tr>
<td>Phenol</td>
<td>10,000</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls (PCBs)</td>
<td>0.000064</td>
</tr>
<tr>
<td>Pyrene</td>
<td>830</td>
</tr>
<tr>
<td>Selenium</td>
<td>170</td>
</tr>
<tr>
<td>Solids Dissolved and Salinity</td>
<td>250,000</td>
</tr>
<tr>
<td>Tetrachlorobenzene,1,2,4,5-</td>
<td>0.97</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>0.69</td>
</tr>
<tr>
<td>Thallium</td>
<td>0.24</td>
</tr>
<tr>
<td>Toluene</td>
<td>1,300</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>0.00028</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>2.5</td>
</tr>
<tr>
<td>Trichlorophenol,2,4,5-</td>
<td>1,800</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>0.025</td>
</tr>
<tr>
<td>Zinc</td>
<td>7,400</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>200**</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.17</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>0.59</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>330</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>35</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>420</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.38</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>0.50</td>
</tr>
<tr>
<td>1,2-Diphenyldiazine</td>
<td>0.036</td>
</tr>
<tr>
<td>1,2,Trans-Dichloroethylene</td>
<td>140</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>320</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>0.34</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>63</td>
</tr>
<tr>
<td>2,3,7,8-TCDD(Dioxin)</td>
<td>5.0E-9</td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>1.4</td>
</tr>
<tr>
<td>항 목</td>
<td>기준값 (㎍/L)</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>77</td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>380</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>69</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>0.11</td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>1,000</td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td>81</td>
</tr>
<tr>
<td>2-Methyl-4,6-Dinitrophenol</td>
<td>13</td>
</tr>
<tr>
<td>3,3'-Dichlorobenzidine</td>
<td>0.021</td>
</tr>
<tr>
<td>3-Methyl-4-Chlorophenol</td>
<td>3000</td>
</tr>
<tr>
<td>4,4'-DDD</td>
<td>0.00031</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>0.00022</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>0.00022</td>
</tr>
</tbody>
</table>

* Alkalinity 및 Aluminum pH 6.5~9.0은 준거치값 미제시 항목이므로 총 항목수에서 제외
** EPA 먹는물 기준 수준으로 강화된 수치
*** EPA 지역생태준거치(Ecoregional criteria)의 총인, 총질소, 클로로필 a, 탁도(투명도) 기준을 따름
**** 심미적 수질준거치에 해당

참고자료 2-1-4

유수질환경기준(음용수로서의 지표수 수질기준)

○ 상수원수에 한해 3등급으로 구분하고 각 국의 상황에 따라 다각한 기준 설정 가능

<table>
<thead>
<tr>
<th>구 분</th>
<th>A1 G</th>
<th>I</th>
<th>A2 G</th>
<th>I</th>
<th>A3 G</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.5-8.5</td>
<td>5.5-9</td>
<td></td>
<td>5.5-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>색도</td>
<td>10</td>
<td>20(○)</td>
<td>50</td>
<td>100(○)</td>
<td>50</td>
<td>200(○)</td>
</tr>
<tr>
<td>TSS (㎎/ℓ)</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>수온 (℃)</td>
<td>22</td>
<td>25(○)</td>
<td>22</td>
<td>25(○)</td>
<td>22</td>
<td>25(○)</td>
</tr>
<tr>
<td>전기전도도 (μs/cm)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>냄새</td>
<td>3</td>
<td>10</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO3-N (㎎/ℓ)*</td>
<td>25</td>
<td>50(○)</td>
<td>50(○)</td>
<td>50(○)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F (㎎/ℓ)</td>
<td>0.7/1</td>
<td>1.5</td>
<td>0.7/1.7</td>
<td>0.7/1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>용존성 철 (㎎/ℓ)*</td>
<td>0.1</td>
<td>0.3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mn (㎎/ℓ)*</td>
<td>0.05</td>
<td>0.1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu (㎎/ℓ)</td>
<td>0.02</td>
<td>0.05(○)</td>
<td>0.05</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn (㎎/ℓ)</td>
<td>0.5</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>B (㎎/ℓ)</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As (㎎/ℓ)</td>
<td>0.01</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>Cd (㎎/ℓ)</td>
<td>0.001</td>
<td>0.005</td>
<td>0.001</td>
<td>0.005</td>
<td>0.001</td>
<td>0.005</td>
</tr>
</tbody>
</table>
제 2차 환경관리 기본계획 부록

<table>
<thead>
<tr>
<th>구분</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>황크롬 (ng/ℓ)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Pb (ng/ℓ)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Se (ng/ℓ)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Hg (ng/ℓ)</td>
<td>0.0005</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>Ba (ng/ℓ)</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CN (ng/ℓ)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>SO4 (ng/ℓ)</td>
<td>150</td>
<td>250</td>
<td>150</td>
</tr>
<tr>
<td>Cl (ng/ℓ)</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>계면활성제 (ng/ℓ)</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>P2O5 (ng/ℓ)</td>
<td>0.4</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>페놀류 (ng/ℓ)</td>
<td>0.001</td>
<td>0.001</td>
<td>0.005</td>
</tr>
<tr>
<td>hydrocarbons (용존 또는 에멀젼, ng/ℓ)</td>
<td>0.05</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>hydrocarbons (다환성 방향족, ng/ℓ)</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.001</td>
</tr>
<tr>
<td>total pesticides (ng/ℓ)</td>
<td>0.001</td>
<td>0.0025</td>
<td>0.005</td>
</tr>
<tr>
<td>COD (ng/ℓ)</td>
<td>>70</td>
<td>>50</td>
<td>>30</td>
</tr>
<tr>
<td>DO (%)</td>
<td><3</td>
<td><5</td>
<td><7</td>
</tr>
<tr>
<td>BOD5 (ng/ℓ)</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>TKN (ng/ℓ)</td>
<td>50</td>
<td>5000</td>
<td>50000</td>
</tr>
<tr>
<td>NH4 (ng/ℓ)</td>
<td>20</td>
<td>2000</td>
<td>20000</td>
</tr>
<tr>
<td>클로로포름으로 추출가능한 물질 (ng/ℓ)</td>
<td>50</td>
<td>1000</td>
<td>10000</td>
</tr>
<tr>
<td>대장균군(37℃) 마리/100㎖</td>
<td>20</td>
<td>1000</td>
<td>10000</td>
</tr>
<tr>
<td>분화성대장균군 (마리/100㎖)</td>
<td>20</td>
<td>1000</td>
<td>10000</td>
</tr>
<tr>
<td>연쇄상 구균(마리/100㎖)</td>
<td>20</td>
<td>1000</td>
<td>10000</td>
</tr>
<tr>
<td>살모넬라균 5000㎖ 종 검출되지 않을 것</td>
<td>10000㎖ 종 검출되지 않을 것</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ I(mandatory, imperative) : 의무적으로 준수해야 하고 이보다 완화된 기준을 배정하는 것이 불허되는 강제적 기준

G(guide) : I가 있든 없든 간에 지침서로서의 이 기준을 존중하려고 회원국이 노력하여야 하는 권장치

(○) : 기상조건이나 지리적 여건 이외의 예외적인 경우에 적용되지 않을 수 있는 기준

* : 수체로 배수되여 안하는 깊이 20m 이하의 낮은 호수나 물의 교환주기가 1년보다 더 느린 사실상의 정체지표수에는 적용되지 않을 수 있는 기준
<table>
<thead>
<tr>
<th>항목</th>
<th>기준값 (µg/L)</th>
<th>CMC*(급성)</th>
<th>CCC**(만성)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrolein</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Aesthetic Qualities</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td>3.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>-</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>alpha-Endosulfan</td>
<td>0.22</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>Aluminum pH 6.5-9.0</td>
<td>750</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>340</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>beta-Endosulfan</td>
<td>0.22</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbaryl</td>
<td>2.1</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>2.0</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Chlordane</td>
<td>2.4</td>
<td>0.0043</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>860,000</td>
<td>230,000</td>
<td></td>
</tr>
<tr>
<td>Chlorine</td>
<td>19</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Chloropyrifos</td>
<td>0.083</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>Chromium(III)</td>
<td>570</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Chromium(VI)</td>
<td>16</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanide</td>
<td>22</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>Demeton</td>
<td>-</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Diazinon</td>
<td>0.17</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td>0.24</td>
<td>0.0560</td>
<td></td>
</tr>
<tr>
<td>Endrin</td>
<td>0.086</td>
<td>0.0360</td>
<td></td>
</tr>
<tr>
<td>gamma-BHC(Lindane)</td>
<td>0.95</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gases, Total Dissolved</td>
<td>0.52</td>
<td>0.0038</td>
<td></td>
</tr>
<tr>
<td>Guthion</td>
<td>-</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Hardness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor Epoxide</td>
<td>0.52</td>
<td>0.0038</td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>0.52</td>
<td>0.0038</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>-</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>65</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Malathion</td>
<td>-</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Mercury (Methylmercury)</td>
<td>1.4</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>항목</td>
<td>기준값 (µg/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMC*(급성)</td>
<td>CCC** (만성)</td>
<td></td>
</tr>
<tr>
<td>Methoxychlor</td>
<td></td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Mirex</td>
<td></td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>470</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Nonylphenol</td>
<td>28</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>Nutrients</td>
<td>9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil and Grease</td>
<td>10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen, Dissolved Freshwater</td>
<td>11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parathion</td>
<td>0.065</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>19</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>-</td>
<td>6.5–9</td>
<td></td>
</tr>
<tr>
<td>Phosphorous Elemental</td>
<td>***</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Polychlorinated Biphenyls (PCBs)</td>
<td>-</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>L</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>3.2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Solids Suspended and Turbidity</td>
<td>12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfide-Hydrogen Sulfide</td>
<td>-</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Tainting Substances</td>
<td>13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxaphene</td>
<td>0.73</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>Tributyltin(TBT)</td>
<td>0.46</td>
<td>0.072</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>120</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>1.1</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

* CMC : Criteria Maximum Concentration (급성 준거치)
** CCC : Criterion Continuous Concentration (만성준거치)
*** Phosphorous element은 준거치값 미제시 항목이므로 총 항목수에서 제외.

1) 폐수 또는 우유수와 원인일 물질 (불쾌한 침전물, 공해물질, 색, 맛, 항 등)이 존재하면 안 됨.
2) pH, 수온 및 발달단계에 따라 차등 적용함.
3) 레크레이션과 레크레이션 시 준거치만 존재함.
4) 자연적으로 발생하는 Boron(붕소)은 수생생물에 영향이 없으며, USEPA의 Boron수생생물 준거치는 750 µg/L (민감한 농작물 관계 시) 만 설정되어 있음.
5) 불쾌한 색이 없어야 함. 원수는 색도 75을 초과하면 안 됨.
6) BLM을 적용한 준거치 사용. (pH, hardness, DOC에 따라 준거치 값이 다르게 설정됨)
7) 대기압과 정수압 하에서 기체 포화도의 110%를 초과하면 안 됨.
8) 산업용수 목적의 준거치만 설정되어 있음.
9) EPA 지역생태준거치(Ecoregional criteria)의 총인, 총질소, 클로로필 a, 틱도 (투명도) 기준을 따름.
10) 석유제품류에서 기인한 맛과 낮새가 존재하면 안 됨.
11) 수온 및 발달단계에 따라 차등 적용함.
12) 광합성활동에 대한 보상점 깊이가 10% 이상 감소하면 안 됨.
13) 수생생물의 가식부에서 심미적으로 불쾌감을 생성하는 농도로 존재해서는 안 됨.
14) 기간 및 생물종마다 차등 적용함.
EU 수생생물보호 환경기준 (13.9)

○ 45개 항목

<table>
<thead>
<tr>
<th>No</th>
<th>물질명</th>
<th>연평균(만성)농도(㎍/L)</th>
<th>최대허용(급성)농도(㎍/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>지표수</td>
<td>내륙외 지표수</td>
</tr>
<tr>
<td>(1)</td>
<td>Alachlor</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>(2)</td>
<td>Anthracene</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>(3)</td>
<td>Atrazine</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>(4)</td>
<td>Benzene</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>(5)</td>
<td>Brominated diphenylethers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>Cadmium and its compounds (depending on water hardness classes)</td>
<td>≤ 0.08 (Class 1)</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.08 (Class 2)</td>
<td>0.45 (Class 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.09 (Class 3)</td>
<td>0.6 (Class 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.15 (Class 4)</td>
<td>0.9 (Class 4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25 (Class 5)</td>
<td>1.5 (Class 5)</td>
</tr>
<tr>
<td>(6a)</td>
<td>Carbon-tetrachloride</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>(7)</td>
<td>C10-13 Chloroalkanes</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>(8)</td>
<td>Chlorfenvinphos</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>(9)</td>
<td>Chlorpyrifos (Chlorpyrifos-ethyl)</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>(9a)</td>
<td>Cyclodiene pesticides:</td>
<td>Σ = 0.01</td>
<td>Σ = 0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aldrin</td>
<td>Dieldrin</td>
</tr>
<tr>
<td>(9b)</td>
<td>DDT total</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>para-para-DDT</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>(10)</td>
<td>1,2-Dichloroethane</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>(11)</td>
<td>Dichloromethane</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>(12)</td>
<td>Di(2-ethylhexyl)-phthalate (DEHP)</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>(13)</td>
<td>Diuron</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>(14)</td>
<td>Endosulfan</td>
<td>0.005</td>
<td>0.0005</td>
</tr>
<tr>
<td>(15)</td>
<td>Fluoranthene</td>
<td>0.0063</td>
<td>0.0063</td>
</tr>
<tr>
<td>(16)</td>
<td>Hexachloro-benzene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(17)</td>
<td>Hexachloro-butadiene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(18)</td>
<td>Hexachloro-cyclohexane</td>
<td>0.02</td>
<td>0.002</td>
</tr>
<tr>
<td>(19)</td>
<td>Isoproturon</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>(20)</td>
<td>Lead and its compounds</td>
<td>1.23</td>
<td>1.3</td>
</tr>
<tr>
<td>(21)</td>
<td>Mercury and its compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>물질명</td>
<td>연평균(만성)농도(㎍/L)</td>
<td>최대허용(급성)농도(㎍/L)</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>지표수</td>
<td>내륙외 지표수</td>
<td>지표수</td>
</tr>
<tr>
<td>(22)</td>
<td>Naphthalene</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(23)</td>
<td>Nickel and its compounds</td>
<td>413</td>
<td>8.6</td>
</tr>
<tr>
<td>(24)</td>
<td>Octyphenols (4-Nonylphenol)</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>(25)</td>
<td>Octyphenols ((4-(1,1',3,3’-tetramethylbutyl)-phenol))</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>(26)</td>
<td>Pentachloro-benzene</td>
<td>0.007</td>
<td>0.0007</td>
</tr>
<tr>
<td>(27)</td>
<td>Pentachloro-phenol</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Polycyclic aromatic hydrocarbons (PAH) 1</td>
<td>적용 불가</td>
<td>적용 불가</td>
</tr>
<tr>
<td></td>
<td>Benzo(a)pyrene</td>
<td>1.7×10⁻⁴</td>
<td>1.7×10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>Benzo(b)fluoranthene</td>
<td>개별 물질의 독성에 따라 수질 기준이 변경</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>Benzo(k)fluoranthene</td>
<td>현재 제시된 값은 없음</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>Benzo(g,h,i)-perylene</td>
<td>적용 불가</td>
<td>적용 불가</td>
</tr>
<tr>
<td></td>
<td>Indeno(1,2,3-cd)-pyrene</td>
<td>적용 불가</td>
<td>적용 불가</td>
</tr>
<tr>
<td>(29)</td>
<td>Simazine</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(29a)</td>
<td>Tetrachloro-ethylene</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>(29b)</td>
<td>Trichloro-ethylene</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>(30)</td>
<td>Tributyltin compounds (Tributyltin)</td>
<td>0.0002</td>
<td>0.0002</td>
</tr>
<tr>
<td>(31)</td>
<td>Trichloro-benzenes</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>(32)</td>
<td>Trichloro-methane</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>(33)</td>
<td>Trifurilin</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>(34)</td>
<td>Dicofol</td>
<td>1.3×10⁻³</td>
<td>3.2×10⁻⁵</td>
</tr>
<tr>
<td>(35)</td>
<td>Perfluorooctane sulfonic acid and its derivatives (PFOS)</td>
<td>6.5×10⁻⁴</td>
<td>1.3×10⁻⁴</td>
</tr>
<tr>
<td>(36)</td>
<td>Quinoxyfen</td>
<td>0.15</td>
<td>0.015</td>
</tr>
<tr>
<td>(37)</td>
<td>Dioxins and dioxin-like compounds</td>
<td>적용 불가</td>
<td>적용 불가</td>
</tr>
<tr>
<td>(38)</td>
<td>Aclonifen</td>
<td>0.12</td>
<td>0.012</td>
</tr>
<tr>
<td>(39)</td>
<td>Bifenox</td>
<td>0.012</td>
<td>0.0012</td>
</tr>
<tr>
<td>(40)</td>
<td>Cybutryne</td>
<td>0.0025</td>
<td>0.0025</td>
</tr>
<tr>
<td>(41)</td>
<td>Cypermethrin</td>
<td>8×10⁻⁵</td>
<td>8×10⁻⁶</td>
</tr>
<tr>
<td>(42)</td>
<td>Dichlorvos</td>
<td>6×10⁻⁴</td>
<td>6×10⁻⁵</td>
</tr>
<tr>
<td>(43)</td>
<td>Hexabromocyclododecane (HBCDD)</td>
<td>0.0016</td>
<td>0.0008</td>
</tr>
<tr>
<td>(44)</td>
<td>Heptachlor and heptachlor epoxide</td>
<td>2×10⁻⁷</td>
<td>1×10⁻⁸</td>
</tr>
<tr>
<td>(45)</td>
<td>Terbutryn</td>
<td>0.065</td>
<td>0.0065</td>
</tr>
</tbody>
</table>

- '13. 7월에 개정되어 33개 항목에서 44개 항목으로 확대. 다만, 다이옥신은 생물에 농축되는 경우만 적용되므로 수생생물 보호기준 개수에서 제외
- 표에 제시된 수치 중 가장 낮은 값이 수생생물 보호 기준으로 적용
- 내륙지표수는 하천 및 호수, 인공 또는 변형수계를 모두 포괄하며 내륙의 지표수는 해안 인근 육지 지표수 등
- 해수 영향을 받는 지역
日本수생생물보호환경기준(’13.9)
○ 생물의 서식현황의 적응성을 분류하여 4개 그룹의 환경기준을 가지고 있음

<table>
<thead>
<tr>
<th>구분</th>
<th>생물</th>
<th>서식현황의 적응성</th>
<th>기준치(㎍/L)</th>
<th>수역</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>생물A</td>
<td>곤mouseout, 연어송어 등 비교적 저온을 좋아하는 수생생물 및 이들의 먹이생물이 서식하는 수역</td>
<td>총아연: 30, 노닐페놀: 1, LAS: 30</td>
<td>지정 수역</td>
</tr>
<tr>
<td>생물특A</td>
<td>A생물의 수역 중 생물A의 산란장소(방식장소) 또는 치어의 생육장소로서 특히 보전이 필요한 수역</td>
<td>30</td>
<td>0.6</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>생물B</td>
<td>임어, 붕어 등 비교적 고온을 좋아하는 수생생물 및 이들의 먹이생물이 서식하는 수역</td>
<td>총아연: 30, 노닐페놀: 2, LAS: 50</td>
<td>지정 수역</td>
</tr>
<tr>
<td>생물특B</td>
<td>생물A 또는 B수역 중 생물B의 산란장(방식장) 또는 치어의 생육장소로서 특히 보전이 필요한 수역</td>
<td>30</td>
<td>2</td>
<td>40</td>
</tr>
</tbody>
</table>

※ 기준치는 연평균값으로 하며 호수, 하천에도 적용
※ LAS : 알킬벤젠설폰산염(계면활성제)
※ 그 외 감시항목: 포름알데하이드(1000㎍/L), 클로로포름(700∼3000㎍/L), 페놀(10∼80㎍/L)

국가별 수질환경기준 비교
○ 대부분의 국가에서 하천 또는 지표수에 대한 수질환경기준을 설정하며, 용수목적별 기준을 제시

<table>
<thead>
<tr>
<th>구분</th>
<th>주요 일반 항목</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>하천(1)</td>
<td>BOD, T-P 등 8개</td>
</tr>
<tr>
<td></td>
<td>호수(2)</td>
<td>COD, T-P, T-N, Chl-a 등 9개</td>
</tr>
<tr>
<td>일본</td>
<td>하천(3)</td>
<td>pH, BOD, SS, DO 등 5개</td>
</tr>
<tr>
<td></td>
<td>호수(4)</td>
<td>pH, COD, SS, DO 등 5개</td>
</tr>
<tr>
<td>미국</td>
<td>지표수(5)</td>
<td>SS, DO, 대탕균수, pH, 온도 질산성질소, 알모니아성질소 등 11개 항목(유기물질 지표 없음)</td>
</tr>
<tr>
<td>EU</td>
<td>지표수(6)</td>
<td>pH, DO, BOD, 유기성종합질소, 알모니아성질소, 질산성질소 등 38개 항목</td>
</tr>
<tr>
<td>영국</td>
<td>하천</td>
<td>pH, DO, BOD, 알모니아성질소, 용수질소 등 5개</td>
</tr>
<tr>
<td>독일</td>
<td>하천</td>
<td>T-N, 알모니아성질소, 질산성질소, T-P, 염소, 산소, TOC 등 11개 항목</td>
</tr>
</tbody>
</table>

(1) 구분 기준 없음
(2) 천연호수, 인공호수로서 체류시간 4일 이상, 저수용량 전만톤 이상
(3) US EPA에서 향후설 수질환경기준(EPA 1976, Quality Criteria for Water)를 제시, 각 주는 이 기준이하가 되지 않는 수준에서 수질기준을 설정하여 관리
(4) 응용수로서의 지표수 기준
2-2. 측정망 확충 및 측정기술 고도화

가. 현황 및 문제점

- 측정망은 일반측정망, 중량측정망, 자동측정망, 퇴적물측정망으로 구분되며, 국가 하천과 호수의 수체와 퇴적물에서 출현하는 오염물질의 종류, 오염정도, 시계열 변화추세, 수질사고 감지 그리고 수생태 및 사람의 건강에 미치는 위해도를 평가하기 위해 운영 중

- 현재의 측정망 운영방식은 수질오염원의 공간적 분포파악에 한계가 있으며, 수질오염사고(화학물질 누출, 물고기 폐사 등)에 대한 추적과 녹조발생의 원인규명에도 한계가 있어 이의 고도화가 필요

 - 특히, 자동측정망은 수질오염사고 조기 감시라는 고유의 목적에도 불구하고 측정 기술과 자료의 신뢰도 문제로 인해 수동측정망의 보조수단으로 활용되고 있으며, 수질오염사고 대응에 있어서도 분석항목, 경보기준, 측정소 위치 등이 적정하지 않은 현실

 - 긴급 상황 발생시 측정자료의 활용이 미흡하며, 측정할 하천수의 원거리 이송에 따른 시료수질 변질(배관내벽 미생물 서식) 등의 우려가 존재

 (표 2-2-1) 하천·호수 시료채취 기준

<table>
<thead>
<tr>
<th>구분</th>
<th>기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>하천</td>
<td>- 수심 2m 이하(1개 지점, 상층수)</td>
</tr>
<tr>
<td></td>
<td>- 수심 2m 초과(6개 지점, 좌·중앙·우×2(수심1/3, 수심2/3))</td>
</tr>
<tr>
<td>호수</td>
<td>- 수심 5m 이하(1개 지점, 상층수)</td>
</tr>
<tr>
<td></td>
<td>- 수심 5m 초과(3개 지점, 상·중·하층수)</td>
</tr>
</tbody>
</table>

- 환경기준 전면 개정(‘19), 수생생물 보호기준(‘17년 예상) 및 건강보호항목 (의약품 등 확대) 기준 설정 등에 필요한 자료 확보를 위해서는 ppb/ppt 정도 수준의 분석능력 및 검출한계 등의 정밀화가 필요
- 현행 하천·호수에서의 중금속물질 및 미량지해물질은 대부분이 불검출 또는
 검출한계 미만으로 측정되어 오염수준에 대한 유의적인 정보 제공에 한계가
 있음

* 측정망 확충 및 측정기술 고도화는 현재의 일반측정망은 4대강 사업 후
 변화된 하천환경을 고려하여 더욱 고도화하고, 자동측정망의 확대와 지능화를
 통해 자료의 신뢰도를 높이고, 미량지해물질에 대해서는 모니터링 정도와
 체계를 더욱 강화필요

* 현재 수질측정망은 주로 맑은 날에 측정이 이루어지고 있기 때문에 강우
 유출수에 의해 발생되는 비점오염물질에 대한 측정 성과는 부족한 실정
 - 비점오염원의 효과적인 유역통합관리와 사전예방적 관리를 위해서는 비점
 오염물질의 이동경로와 공공수역으로 유출되는 양을 정량적으로 산정할
 수 있는 비점오염물질 측정망 도입 및 지속적 확충이 필요

* 공공수역내 방사성물질에 의한 위해 잠재성을 선제적으로 차단하고 지속
 적인 조사와 모니터링 및 관리를 통해 안전성 확보 필요
 - 실태자료 결과를 통해 공공수역의 방사성물질이 영향을 줄 수 있는 가능성을
 사전에 모니터링하고 그에 따른 대안을 만들어 방사성물질로부터 안전한
 공공수역을 유지 필요

* 퇴적물의 수질 및 수생태계 영향에 대한 평가·관리 기준을 마련하기 위해
 국내 퇴적물의 지화학적 특성, 오염 영향 자료를 측정 중이나, 아직까지는
 초기 단계
 - 퇴적물 측정망 운영계획 수립 및 측정망 운영(’11.6～)259
 - 퇴적물 공정시험기준 마련(’12.5)260
 - 하천, 호소 퇴적물 배경농도 조사(하천 ’12, 호소 ’14)

259) 하천 174개(한강권 39개, 낙동강권 60개, 금강권 37개, 영산강권 38개), 호소 84개(한강권 24개, 낙동강권 12개,
 금강권 23개, 영산강권 25개)
260) 강열감량, 아연 등 20개 항목에 대해 시료체취·분석방법 등 규정
제 2차 물환경관리 기본계획 부록

3. 기반 및 역량 강화 전략

나. 주요대책

- 수질자동측정망 기능 정립 및 역할 확대
- 측정망 간 연계성 강화
- 수질모니터링 범위 확대
- 실험실 고도화
- 비정오염물질 측정망 도입
- 공공수역 방사성물질 관리 강화
- 수질오염물질 측정망 도입
- 수질감시 기능 중심의 수질자동측정망 개편(‘16∼)

□ 수동측정망과 자동측정망의 역할 정립

감시기능 중심의 수질자동측정망 개편(‘16∼)
- 수질감시 중요도에 따라 측정소를 분류하고 지류·지천 수질오염감시 강화
 - 취수장, 오염원 취치, 오염사고 발생여부 등 수질감시 중요도에 따라 주요 측정소, 일반측정소 분류관리, 측정망 위치 적정성 평가(5년 주기), 오염원 발생지역 중심의 지류·지천에 소규모 자동측정망 확충

261) 퇴적물측정망 결과를 대상으로 1차적으로 명확한 오염여부를 판단할 수 있도록 유기물 및 영양분류 3개, 중금속 7개 등 10개 항목에 대해 고농도 기준만 설정(붙임)
262) 국내외 저서생물 3종에 대한 퇴적물 독성 및 화학분석(중금속 8항목, 암모니아, 황화수소) DB 구축 및 오염정도에 따른 저서생물 악영향 수준별로 지침값 도출(‘12∼’14)
수질오염정밀 감시 기능 확대
- (중기전략) 주요 지점에 중점 집중측정소(선상측정소) 설치·운영 확대를 통해 현장에서의 신속한 분석 및 사고대응 등이 가능하도록 기능 강화
 * 자동측정망 운영환경 동일한 시스템 구축을 통한 신뢰도 제고, 전례의약물질, 응존미량물질 등 정밀모니터링, 측정분석 자동화 연구 기능 강화
- (장기전략) 가칭 국가측정방향센터를 설립하여 대기·수질 등 분야별 사료 채취, 조사·분석, 데이터 관리 등을 전담하여 운영

측정망 간 연계성 강화
- 현재 설치 운영 중인 측정망들의 목적, 분석항목, 위치 등을 주기적으로 재검토, 평가하여 측정망을 탄력적으로 운영
- 이화학 및 수생태적 정보 외에도 유량 및 기상자료도 함께 측정
- 기존 수질측정망은 측정망별로 개별적으로 운영되어 자료 간 연계성이 부족해 종합적인 평가에는 한계가 있으므로, 기존에 운영되는 측정망과 더불어 새로 도입되는 비점오염물질 측정망까지 상호간의 연계성을 고려하여 운영

수질모니터링 범위 확대
- 선·면단위 수질모니터링 측정장비 구축(’16∼’17)
 - 수질측정망은, 상대로 수질관리 우선도가 높은 공공수역(16개 보, 주요 상수원 4개소)에 대해 점단위에서 선·면단위까지 수질모니터링 범위 확대 점검이 필요
 - 채수 지점은 보 상류 수면을 격자형(3x3, 9개 포인트)으로 구성하여 상·중·하층 중 1개 대상지역당 27개 포인트 채수
 - 조사항목은 Chl-a, 탁도, 수온, pH, DO, 전기전도도 등으로 구성하고, 자동 원화에 의해 수심별 측정이 가능한 장비를 설치
실험실 고도화

현행 \(\times 6\)개 포인트) > 개선(\(\times 27\)개 포인트)>

(그림 2-2-1) 수질측정망 고도화의 개념도

- 실험실 고도화를 위한 분석역량 강화(‘17∼’18)
 - 현행 ppm 수준의 수질측정망 측정값을 ppb/ppt 수준으로 정밀화하기 위해서는 실험실 고도화(측정장비의 현대화, 전문인력, 공간 확보 등) 추진
 - 또한 시료채취 및 분석인력에 대한 정도관리 및 정도보증에 대한 교육 등 인력에 대한 역량강화가 필요하며, 수생생물 보호기준 및 환경기준 추진 일정과 연계하여 적기 예산확보 및 기반 구축 추진

비점오염물질 측정망 도입 및 확충

- 「수질 및 수생태계 보전에 관한 법률」 제9조 및 시행규칙 제22조에 따라 비점오염물질 측정망 구축·운영을 통해 유역별 수질 현황, 비점모델의 기초 자료로 제공하고 조사유역의 비점오염 부하량 산정, 정책 효과분석 등의 자료로 활용하기 위해 4개 분야로 나누어 측정망 업무 추진
<표 2-2-2> 비점오염물질 측정망 업무 추진

<table>
<thead>
<tr>
<th>측정망 운영</th>
<th>활용목적</th>
<th>조사내용 및 특성</th>
</tr>
</thead>
</table>
| • 유역별 비점오염원기초조사 | • 비점오염 관리가 필요한 유역선정 및 우선순위 설정 | • 유역단단에서 강우수 수질·유량 조사
• 비강우수 기저농도 파악을 위해 정기적 조사 |
| • 배수구역별 비점오염 부하량 조사 | • 비점오염 관리가 시작된 지역의 중요 오염원 파악 | • 배수구역별, 토구별, 강우수 비점부하량 조사
• 동시에 다수 지점 조사 |
| • 비점모델을 위한 조사 | • 비점모델구축 | • 모델 입력자료, 보·검증자료 제공
• 다양한 측정항목 필요
• 예측 정확도를 위해 장기간 자료 촉적 |
| • 최적관리기법 성과평가 조사 | • 최적관리기법 성과평가 | • 지감시설 성능평가를 위해 강우수·유출수 동시 측정
• 최적관리기법 적용후 유출량 감소 및 수질개선 효과 평가를 위한 조사
• 관리지역 대상으로 정책효과 평가 |

- '25년까지 전국 840개 소권역 중 28개 소권역, 124개 지점에 대해 비점오염 물질 측정망을 단계적으로 확충
 - 2개의 소권역을 대상으로 시범사업을 통해 비점오염물질 측정망 설치·운영 계획 및 공정시험기준을 마련하고,
 - '25년까지 비점오염관리 지정지역, 비점저감시설 설치신고 지역, 조류발생 지역, 물고기 폐사지역, 상수원 보호구역 등을 중심으로 체계적으로 확충

- 공공수역 방사성물질 관리강화
 - 공공수역 방사성물질 측정망 확대를 위한 중장기 로드맵 마련('17)
 - 조사 대상(퇴적물, 수생생물 등) 및 조사항목 확대, 매체별/핵종별 방사성 물질 공정시험기준 마련 등 조사 및 측정망 운영계획에 대한 개선
 - 특히, 조사된 모니터링 자료를 근거로 특이 측정값이 확인된 경우 조치 사항 체계화 및 관리방안(경보 또는 예보체계 마련 등)을 마련
 - 모니터링 공공수역 방사성 물질 모니터링 결과에 대한 정보제공 및 대국민 홍보시행을 통해 방사성물질로부터 안전한 공공수역 환경을 조성
· 퇴적물의 기본적 관리에 필요한 오염평가기준 및 정화선별 기준 마련

 - 준설기준이 아닌 정화선별기준(CSL) 및 정화절차 가이드라인 마련 추진
 - 준설은 퇴적물 정화방법의 한 종류로써 오염도에 따라 준설여부(방법)를 판단할 수 없음

· 단계적으로 퇴적물의 환경기준 확대 및 발전 방안 추진

 - 환경기준 제정을 위해서는 수질 및 수생태계 영향 정도에 대한 상관관계 규명, 수계별 목표기준 도출 등 추가 연구를 통해 장기적 추진 필요

다. 향후 추진 일정

- 실험실 고도화에 따른 검출수준 적용(’19～)
- 선·면단위 수질모니터링 범위 확대 및 적용(’16～’25)
- 비점오염물질 측정망 도입 및 확충
 - 비점오염물질 측정망 측정망 구축 시범사업(’15～’16)
 - 비점오염물질 측정망 단계적 확충(124개 지점, ’17～’25)
 - 비점오염물질 측정망 설치, 운영계획 및 공정시험기준 마련(’16)
 - 비점오염물질 측정값 해석기법 및 관리기술 마련(’20)
 - 유역별 비점오염원 배출량 및 평가체계 구축(’20～)
- 공공수역 방사성물질 조사 및 측정망 운영, 측정자료 DB화 등 관리 강화(’16～’25)
- 퇴적물의 기본적 관리에 필요한 오염평가기준 및 정화선별 기준(CSL)·정화절차 가이드라인 마련
 - 중급척 8개 항목 오염평가기준 세분화 및 정화선별기준(CSL) 및 정화척자 가이드라인 확정(’15년 말)
만약평가기준 고시 및 관리기준 적용(‘16~)

- 단계적으로 퇴적물 환경기준 확대 및 발전 방안 추진
 - 수질 및 수생태계 영향 정도에 대한 상관관계 규명 연구(‘16~’18)
 - 수계별 목표기준 도출 및 시행방안 연구(‘19~’22)
 - 수계별 목표기준 시범 적용(‘23~’24) 및 환경기준 설정(‘25)

수질오염 사고에 대응하기 위한 실시간 연속 수질모니터링 기술개발

- 수질오염 사고에 대응하기 위해서는 실시간 연속 수질모니터링에 대한 요구가 증대되어, 2006년부터 WARMER(WAter Risk Management in EuRope)를 통해 기술개발을 추진하여 2009년에 완료
- WARMER 프로젝트는 초소형 화학 및 생물 센서개발, 미량 샘플 처리를 위한 마이크로 기계분석 시스템, 분석화학 기술, 정보통신(ICT) 기술, 원격정보기술 개발을 포함하며, 사·공간적으로 광범위한 환경데이터의 실시간 수집을 통해 웹기반의 통합 위험 관리시스템을 구축
제 2장 물 환경관리 기본계획 부록

제 3부 기반 및 역량 강화 전략

자료: www.projectwarmer.eu/

○ 일본은 공공수역의 수질자동감시 체제 강화를 위해 일반항목 중심의 118개소의 자동측정개소가 설치되어 있고, 전국 일급하천에 248개소를 별도 설치·운영 중이며 하천정보센터에서 대국민 정보를 제공
 - 공공수역에서는 생물경보장치를 도입·운영하지 않고 있으나, 오사카 수도부 수질관리센터에서는 잉어를 이용한 생물감시장치와 수돗물수질기준 항목 중벤젠 등 22개 VOCs 항목을 자동측정 중

○ 미국의 경우는 특히 주정부마다 수질 모니터링 기본계획을 위원회에서 수립·운영하고 있으며, 각 지방, 주, 연방기관별로 수질자동모니터링을 운영한다.
 - EPA (Volunteer Monitoring) 및 USGS (National Water Quality Assessment)에서는 수질 변화 경향성 파악을 위한 수질평가프로그램 운영을 통해 강·지하수 및 수생태계 정보를 제공
 - 수질모니터링은 기본적으로 pH, 전기전도도, 수온, 용존산소, 탁도, 클로로필-a 중심으로 분석하고 있으나, 일부 주정부에서는 오염원 특성을 고려하여 생물감시 및 VOCs 장치 도입·운영 중

◆ 미국, 국가차원의 비점모니터링 실시

○ 미국은 지역 단위의 모니터링 및 수질 총량제의 강우유출수(MS4) 계획수립등의 정보제공을 위해 자료관리 시스템을 구축·운영하고 있고 총 9개의 EPA zone를 대상으로 계절별로 토지 이용 특성에 따라 17개주 66개의 지역사무소 및 지자체를 통해 3,770개의 강우사상에 대한 자료를 생산하고 있음
 - 측정자료는 국가차원에서 관리(National Stormwater Quality Database, NSQD)하고 비점오염원의 기여율과 부하량 산정, 중요 오염원지역 파악을 위한 배수구역 선정, 비점모델 구축 및 보검증, 최적관리기법 효율 및 성과평가 등의 기초자료로 활용되고 있음

◆ 외국의 경우 상수원 및 공공수역 내 방사성물질에 대한 주기적 조사를 시행

○ 영국의 경우, 환경청(EA) 등의 기관에서 전국 31개 상수원에 대한 방사성 물질에 대한 조사를 분기별로 시행
 - 프랑스의 경우에는 공공수역은 아니지만 원자력발전소 주변의 하천을 대상으로 정기적인 검사를 수행
 - 일본의 경우 조사지점이 매우 넓고 다양하며 수원지를 포함하여 지하수, 해역 등에 대한 조사를 시행
 - 특히, 일본의 경우, 원전사고 발생 경험이 있기 때문에 하천 및 호수 수원지에 집중적인 모니터링을 수행
2-3. 물환경 통합의사결정 체계 구축

가. 현황 및 문제점

- (물관리 의사결정지원시스템) '물환경정보시스템'과 그 외에도 다양한 물관련 정보시스템이 구축·운영중에 있으나 일부 중복된 기능 수행으로 정리 및 유사 정보시스템 통합을 통한 공동활용이 필요(※ 참고자료 2-3-1: 미국 EPA와 국내 물환경정보시스템 비교분석표)
- 물환경 기초자료에 대한 표준화(안)이 없어 유사시스템 간 상호 연계 어려움
 - 물관련 정보시스템 중복투자 우려와 잘못된 정보제공의 개연성이 높음
 - 데이터 기반 분석기법의 부재로 단순 정보제공 기능에 치중하여 업무 활용도가 낮음

- (전국 오염원 조사) 오염원조사는 수질오염원을 총괄하여 현황을 파악하고 발생·배출하는 오염부하량을 산정하는 유일한 자료
 - 지자체 제출자료 의존도가 높고 방대한 자료를 조사함에 따라 정확성 및 신뢰성이 낮다는 내·외부 의견이 많음
 - 정책 수립 추진 시 당업 현황을 반영할 수 있도록 조사결과를 제공해야 하나 자료제출 지연과 검증·확정·부하량 산정 소요시간이 길어 적시에 자료 활용이 곤란

- (산업폐수정보시스템) 산업폐수관련 정보화 시스템은 다양한 기관 및 시스템에서 분산되어 수집, 관리 되고 있음

263) 환경부, 2007, 수질측정 및 수생태계조사 장기계획 수립
264) 수질측정망 운영자료, 수생태 관리성 조사자료, 오염원 조사자료, 기상 및 수리수문 관측자료 (연계)수집, 관리 및 제공
265) 총량관리시스템, 오염원조사시스템, 세인급환경정보시스템, 한강유역통합관리시스템 등
266) 오염원조사는 당초 지역별로 분리하여 실시하였으나 2000년부터는 환경부에서 통합하여 실시·관리하고 있으며, 수질오염원을 6개생활계, 산업계, 축산계, 토지계, 양식계, 환경기초시설 등으로 구분하여 일반현황, 오염물질 배출현황 등을 조사, 그 결과를 국민에게 공개하고 있음
- 중앙정부의 산업폐수 관리를 지방정부로 위임함에 따라 효율적인 정보의 소통이 부재한 상태임, 또한 이를 효율적으로 연계해줄 정보화 시스템이 마련되어 있지 않음
- 효율적인 위·수탁폐수처리를 위하여 폐수 수탁처리업 제도가 운영되고 있으나 실제 위탁발생량과 이동량, 처리량 등이 정확하지 않아 위탁폐수의 관리가 제대로 이루어지고 있지 않음

(가축분뇨 전자인계시스템) 가축분뇨의 배출, 수집, 운반, 처리과정이 명확하지 않아 체계적인 관리 미흡
- 법 개정(14.3.24 공포)을 통하여 전자인계관리시스템 의무화 도입
 - 돼지 분뇨 및 액비를 대상으로 ’17년부터 적용(신고대상 배출시설은 ’19년)
- 시스템 구축 및 시범사업 추진
 - ’13년부터 제주도·새만금 유역 차량 장비설치(225대) 및 시범운영
 - ’15년~’16년 전국 대상 차량 장비설치 확대 추진중(약 725대)
 - 설치대상 차량 : 전국 약 1,200대
 - 운영자(관련업자) 및 관리자(관계공무원) 대상 교육 및 홍보

(IoT 기반 물환경관리) 최근 주목받고 있는 사물인터넷을 활용한 물환경 관리방안 또한 미래 물환경관리계획에 접목이 필요
- 전 세계적으로 국민의 안전과 지속가능한 환경·자원 관리를 위하여, 초연결 사회267)의 핵심 기술인 사물인터넷(Internet of Things, IoT) 활용을 통해 공공재(환경, 에너지, 자원, 폐기물 등) 관리의 성과향상 필요성이 지속적으로 제기
- 국내에서도 안정된 네트워크 환경 및 핵심요소 기술(초고속 이동통신, 고감도센서, 빅데이터 처리 등)의 발전, 신정책기조의 부합에 따른 적극적 정부지원으로 IoT 물환경관리를 위한 기반 조성이 필요

267) Cisco (2013)
내. 주요대책

- ICT 기반 물관리 의사결정지원시스템 구축 · 운영
- 전국 오염원 조사 신뢰도 향상
- 산업폐수 정보화 시스템 구축
- 가축분뇨 전자인계시스템 마련
- IoT 기반 물환경관리 활성화

- ICT 기반 물관리 의사결정지원시스템 구축 · 운영
 - 물관련 정보시스템 표준화(안) 마련 및 공동활용체계 구축
 - 하천망분석도를 중심으로 물환경 기초자료 표준화 방안 마련
 - 기초자료 수집 및 생산업무(국가 수질측정망, 전국오염원조사, 수질오염
 총량관리, 수생태계 건강성조사, 비점오염원 관리 등)에 대한 정보화업무
 지원 필요
 - 유사 정보시스템 연계 통합으로 공동활용을 위한 개방형 플랫폼 구축
 - 데이터베이스 폼질개선 및 수요자 중심 맞춤형 서비스 제공기능 개선
 - 첨단 IT기술(open API, SNS 등)을 활용한 실시간 정보 서비스
 - 하천망분석도 기반 물환경변화 원인분석기능 개발
 - 수질변화 원인분석, 집수구역 단위 수생태계 건강성평가, 신규 배출시설
 사전영향평가, 합리적 규제완화 등 물관리 업무유형별 분석기능 개발
 (※ 참고자료 2-3-2: 하천망분석도 v 2.0 구축현황)

- 전국 오염원 조사 신뢰도 향상
 - 전국오염원 현황 진단·평가 관리체계를 구축
 - 수계·유역·지역 별 오염원 현황을 평가·진단하여 관리되고 있지 않은 오염원
 및 취약분야를 발굴, 결과 자료 제시
오염원별 오염물질 발생에서 방류까지의 현황을 시각화
 - 한눈에 오염원자료를 파악할 수 있도록 하고, 자료수요자 맞춤형으로 지역별정보 제공

새움행정시스템 등 관련 행정시스템을 활용
 - 지자체나 환경기초시설 등에서 제출하는 자료를 최소화
 - 자료생산경로 단일화 및 검증자료를 확대하여 자료확정까지의 소요시간과 자료공개주기 단축, 정확성 향상
 - 관련 시스템 : 새움행정시스템, 가축분뇨전자인계관리시스템, 쇠고기 이력제, 돼지고기이력제 등

산업폐수 정보화 시스템 구축
 - 싱싱망성, 활용성 중심의 산업폐수정보시스템 구축
 - 자유로운 산업폐수관련 자료의 생성, 수집, 활용(허가, 지도·점검 등 감시, 부과금, 행정처리 등) 등이 이루어지도록 정보화 시스템 구축
 - 기존의 시스템의 문제점 개선과 함께 연계관리가 가능하도록 유도
 - 새움, 시도행정, 전국오염원 시스템 등 사용자의 다양한 요구를 만족시키기에는 시스템 특성상 활용성이 매우 낮음(※ 참고자료 2-3-3 : 국내외 대표적인 정보화 시스템 현황)

산업폐수정보화시스템과 연계한 위·수탁 폐수의 체계적인 관리를 위한 전자인계·인수시스템 구축

가축분뇨 전자인계시스템 구축
 - 돼지분뇨 및 액비 수집운반·살포차량에 위성항법장치(GPS), 중량계, 영상 장치를 설치하여 실시간 위치 및 중량 변화정보 관리
 - 배출량의 자동 계량과 수집운반 과정의 중량변동, 액비살포 적정여부 등
가축분뇨 관리대장·일지 등을 인계정보 대체

관계공무원의 시스템 운영현황 확인을 통한 관리 강화

새울행정정보시스템, 국가동물방역통합시스템(KAHIS), 농림사업정보시스템(AGRIX) 등과 연계하여 GPS 등 장비의 증복설치 방지 및 정보 공유

직무 대상이 돼지 및 액비로 한정되어 있으므로, 말,젖소소 등 가축 및 퇴비로 대상을 확대하여 가축분뇨 관리체계 확립(※참고자료 2-3-4: 가축분뇨 전자인계관리시스템 구축도)

IoT 기반 물환경관리 활성화

IoT 기반 물환경관리 활성화 기반 구축 및 컨텐츠 마련(‘16∼’17)

- IoT 도입 및 적용을 위한 정책이나 전략적 요인을 체계적으로 도출하는 등 도입여건 분석 및 기반 마련
- 수량, 수질 및 수생태관리를 포함한 물환경 전반의 IoT 활성화 정책과 로드맵 작성 필요

다. 향후 추진 일정

물관리 의사결정지원시스템 구축·운영

- 물환경정보시스템 고도화를 위한 정보화전략계획 수립(‘15)
 - 물환경 기초자료 표준화(안) 및 정보화업무지침 마련
- 물관리 정보시스템 통합 및 공동활용시스템 구축(‘16∼’18)
- 물환경변화 원인분석기능 개발(‘17∼’19)
 - 규제 합리화, 배출시설 사전영향평가, 비점관리 등 업무유형별 맞춤기능 개발
- 의사결정지원시스템 구축 및 운영(‘20)
○ 전국오염원조사 정보관리체계 구축
 - 전국오염원조사 현장조사(’16~’25)
 - 전국오염원조사 정보관리체계 구축(’16~’18)
 - 자료 검증·분석 관리체계 구축(’16~’17)
 - 지역오염원 진단 및 평가관리체계 구축(’16~’18)
 - 데이터 품질관리 및 공간정보 구축(’16~’18)

○ 산업폐수정보시스템 구축
 - 기존시스템을 활용한 산업폐수정보시스템 구축 및 연계(’17~’18)
 - 위·수탁 전자 인제·인수시스템 등 부수적 기능 시스템 마련(’16~’17)
 - 기능고도화 및 활용성 배가를 위한 보완 및 시스템 전면 사용(’19~’25)

○ 가축분뇨 전자인계시스템 구축
 - GPS 등 자량 장비설치 등 기반 구축(’15~’16)
 - 적용 의무화(’17)에 따른 시스템 운영시스템 운영(’16~’25)
 - 적용대상 가축종류(소, 퇴비) 확대(’24)에 따른 차량 장비 설치(’24~’25)

○ IoT 기반 물환경관리 활성화 기반 구축 및 컨텐츠 마련 (’16~’17)
 - 물환경 전반의 IoT 활성화 중장기 전략 수립
<table>
<thead>
<tr>
<th>구분</th>
<th>EPA의 환경정보시스템</th>
<th>우리나라는 환경정보시스템</th>
<th>비고</th>
</tr>
</thead>
</table>
| 물환경정보 공동활용 기반 | WATERS (Watershed Assessment, Tracking & Environmental Results System) | 물환경분석예측 활용 기초데이터 통합 제공 | 물환경 데이터 전반을 수집·저장 하고 있으나, 자료의 시실간 등급이 불균질 | - 수집, 관리사건조성 및 기반정보 - 기존 국가자료와 임의의 분산된 다중 정보의 통합, 일관성 개선 필요,
| | | 연계적 분석이 어려운 정보 제공 | 단순 조사 및 업무 단위별 개별 활용에 그치고, 실시간 정보 제공 역시 일부에 불과 | - 수의난경 사례의 조사, 반영 - 수질방역 및 역학연루된 전용 정보 제공 |
| | NHD (National Hydrography Dataset) | 표준화된 하천망분석이 가능함 | 지리정보 데이터의 중심화된 단축공해에 대한 접근 | TA 물환경정보의 공동 활용 체계 구축 필요로 분석업무의 활용 미흡. |
| 오염사고 | River Spill | 상류 오염원의 역추적 및 하류 오염물질 확산 경로, 시간, 유량, 역추적 | 오염사고상황 분석, 예측, 관리 시스템 보체 | 크고, 안정화된 상황시 조치의 필요성 |
| | BASINS** (Better Assessment Science Integrating point & Non-point Sources) | 오염사고상황 사태모니터링 및 경계 기능 제공 | 수질오염사고 발생 시 연장조사, 실시간 분석에 따른 조사 및 보고 | 신속한 초기반응시 사태 및 실시간 상황전파체계 미흡 |
| 녹조 예방 | HABOS (Stormwater Algal Bloom Source Tracking System) | 조류발달지역 대상으로 조류확산 규모 및 공간적 정보에 대한 분석 결과 | 단순이 조류측정정보를 만드러 | 녹조 확산 조사 및 재가진반수질개량 또는 역용에 의존 |
| | NPDES (National Pollutant Discharge Elimination System) | 공공수역 배출물량과 수질오염을 | 하천 수질을 종합적으로 고려한 | 현장구역 중심의 수질관리 |
| | BASINS | 오염물과 배출물량을 종합적으로 고려한 | 연수 시스템에서는 지리적 범위 | 전문가간의 협력이 필요 및 담당자의 판단에 의존 |
| | BASINS | 물관리정책 수립에 필요한 분석 예측 정보 제공 | 연수 시스템에서는 지리적 범위 | 전문가간의 논의와 담당자의 판단에 의존 |

* 하천구분도 (Reach File) : 수질수문학적 특성을 따라 전국하천을 구간을 세분하여 물의 요소에 따른 관계를 표현한 지리정보
** BASINS : 물관리사례전달에 필요한 다양한 분석 및 예측 기능을 포함하는 시스템 제작자로서, 수질관리, 종량관리, 유역관리, 비정적, 투자관리 등의 활용
하천망분석도 구축 현황 및 고도화 계획

<table>
<thead>
<tr>
<th>구분</th>
<th>전체</th>
<th>구축 현황</th>
<th>미구축 현황</th>
</tr>
</thead>
<tbody>
<tr>
<td>하천 연장</td>
<td>29,868 km</td>
<td>17,085 km (57%)</td>
<td>12,783 km (43%)</td>
</tr>
<tr>
<td>하천 개수</td>
<td>3,838 개</td>
<td>2,160 개 (56%)</td>
<td>1,678 개 (44%)</td>
</tr>
<tr>
<td>유역 면적</td>
<td>110,108㎢</td>
<td>85,630㎢ (78%)</td>
<td>33,256㎢ (22%)</td>
</tr>
<tr>
<td>대권역</td>
<td>21개</td>
<td>10개 (48%)</td>
<td>11개 (52%)</td>
</tr>
<tr>
<td>중권역</td>
<td>117개</td>
<td>84개 (72%)</td>
<td>33개 (28%)</td>
</tr>
<tr>
<td>표준유역</td>
<td>850개</td>
<td>663개 (78%)</td>
<td>187개 (22%)</td>
</tr>
</tbody>
</table>

그림 설명:
- KRF Node
- KRF Reach
- KRF Catchment
- No KRF dataset
참고자료 2-3-3

■ 국내외 정보화 시스템 현황(허가시스템 포함)

<table>
<thead>
<tr>
<th>구분</th>
<th>국내</th>
<th>해외</th>
<th>국내</th>
<th>해외</th>
</tr>
</thead>
<tbody>
<tr>
<td>세움터</td>
<td>백토리온</td>
<td>미국(eNOI)</td>
<td>유럽(E-PRTR)</td>
<td></td>
</tr>
<tr>
<td>활용분야</td>
<td>건축</td>
<td>공장설립</td>
<td>허가</td>
<td>오염원, 배출량 등</td>
</tr>
<tr>
<td>시스템 목적</td>
<td>건축행정 업무의 전자적 One stop 서비스 제공</td>
<td>공장설립 및 동록에 관한 업무를 전산화하여전국적인 단일 공정 정보망 구축</td>
<td>배출시설 허가 관련 민원의 전자 서비스 제공</td>
<td>산업시설에서 배출되는 오염물질 등 유럽 각국의 환경정보 조회 서비스 제공</td>
</tr>
<tr>
<td>생산주제</td>
<td>건축 관련 민원인</td>
<td>공장설립 예정자 등</td>
<td>공무원</td>
<td>배출시설 운영자</td>
</tr>
<tr>
<td>수집내용</td>
<td>건축허가, 착공, 사용승인, 건축신고 등</td>
<td>토지이용계획, 지역지구 등의 행위제한 내용</td>
<td>토지이용계획, 지역지구 등의 행위제한 내용</td>
<td>토지이용계획, 지역지구 등의 행위제한 내용</td>
</tr>
<tr>
<td></td>
<td>주택건설사업계획승인, 착공, 사용검사, 행위허가</td>
<td>공장설립등록 정보</td>
<td>공장취득등록 정보</td>
<td>공장취득등록 정보</td>
</tr>
<tr>
<td></td>
<td>대장작성, 기재사항변경, 면적, 발급, 면적 등</td>
<td>공정변경, 조합, 사업시행인가, 관리자분, 착공, 준공인가, 정비사업전문관리업 관련 민원 등</td>
<td>공정변경, 조합, 사업시행인가, 관리자분, 착공, 준공인가, 정비사업전문관리업 관련 민원 등</td>
<td></td>
</tr>
<tr>
<td></td>
<td>건축사 등 관련 신고, 승인, 등록 등의 신청</td>
<td>토지이용계획 현황</td>
<td>지역지구 등의 행위제한 내용 현황</td>
<td>토지이용계획 현황</td>
</tr>
<tr>
<td></td>
<td>토지이용계획 현황</td>
<td>공장취득등록 정보</td>
<td>공장취득등록 정보</td>
<td>공장취득등록 정보</td>
</tr>
<tr>
<td></td>
<td>지역지구 등의 행위제한 내용 현황</td>
<td>공정취득등록 정보</td>
<td>공정취득등록 정보</td>
<td>공정취득등록 정보</td>
</tr>
<tr>
<td></td>
<td>민원의 전산처리 기능</td>
<td>지역별 오염물질배출현황</td>
<td>지역별 오염물질배출현황</td>
<td>지역별 오염물질배출현황</td>
</tr>
<tr>
<td></td>
<td>주택건설등록</td>
<td>산업별 오염물질배출현황</td>
<td>GIS 서비스를 통한 오염물질 발생 및 이동경로 제공 등</td>
<td>독성물질 등에 대한 정보공개 기능</td>
</tr>
</tbody>
</table>
참고자료 2-3-4

가축분뇨 전자인계관리시스템 구성도

 추진 체계

<table>
<thead>
<tr>
<th>주관 기관</th>
<th>환경부(유역총량과)</th>
</tr>
</thead>
<tbody>
<tr>
<td>민간 업체</td>
<td>가축분뇨 배출/운반처리업체</td>
</tr>
<tr>
<td>추진 기관</td>
<td>한국환경공단</td>
</tr>
<tr>
<td>운영 기관</td>
<td>농식품부, 지자체</td>
</tr>
</tbody>
</table>

- (환경부) 통합 정보 관리 및 정책 수립 실행 등
- (지자체) 정보관리 및 모니터링, 지도단속 자료 확보
- (축산농가, 운반처리업자) 전자인계서, 자가처리 내용 작성
- (농림축산식품부) 방역관리시스템의 정보 공유 협의

업무처리도

1. 배출(배출농가)
 - 배출인계서 생성
 - 배출지
 - 가축분뇨 상자

2. 수집/운반
 - 중량 상수
 - 운반인계서 작성
 - 중량 감소

3. 처리(공공처리시설,재활용업체)
 - 개별적정관고
 - 처리인계서 작성
 - 처리

4. 액비/살포
 - 액비 운반/처리인계서 작성
 - 액비

5. {가축분뇨 수집운반차량에 부착되는 정보기기}

 - 모바일 전송장치
 : 위치 및 중량정보 전송
 - GPS
 : 위치정보 및 범위정보
 - 영상장치
 : 운행상황 모니터링
 - 중량센서
 : 중량정보 업데이트
주요 선진국은 물환경관리의 통합시스템, 정보통신기술 기반 스마트 시스템 구축에 주력

- 미국 EPA는 물환경관리와 관련하여 다양한 분야의 시스템을 구축하고, 분석을 위한 툴을 제공
 - 대표적인 물환경정보 공통활용 시스템인 WATERS\(^{268}\)의 경우 물환경 분석, 예측 및 활용을 위한 기초데이터의 통합제공, 실시간정보 수집, 데이터 공통활용, 하체단위 데이터 통합 활용을 지원
 - 물관리의사결정 시스템 페키지인 BASINS\(^{269}\)은 수질관리, 홍수관리, 유역관리, 비정착관리, 투자관리 등 다양한 물관리 정책 수립의 정보 제공 및 의사결정지원의 기능을 가지고 있음
 - 선진국은 배출오염원 통합시스템을 구축 및 운영 중
 - 미국 EPA는 eNOI\(^{270}\) 시스템을 구축하여 건설, 산업시설, 농약, 선회 등 배출시설 허가와 관련하여 전자문서로 계획통지서를 제출

- 유럽의 오염물질 배출 및 이동 등록 시스템, E-PRTR\(^{271}\)의 경우, 유럽 전역의 산업시설로부터 배출되는 오염물질의 종류, 폐수배출량, 배출 경로 등을 지도로 확인할 수 있는 인터페이스를 구축

- 호주 정부의 경우 NPI\(^{272}\) 시스템을 통하여, 오염물질 항목, 오염물질 배출 및 이동 보고 등과 관련된 자료를 공개

![유럽의 E-PRTR 시스템](https://example.com/eprtr)
최근 선진국의 물환경관리에는 IoT 또한 적극 활용되고 있는 실정

○ 미국은 정부주도형으로 콜로라도, 서부지역 물문제 해결을 위해 스마트워터그리드 프로젝트를 운영, 민간에서는 IBM이 IoT를 이용한 ‘똑똑한 지구(Smarter Planet)’의 프로젝트 내 IBM intelligent water 솔루션을 개발 수자원, 점오염원 관리 서비스를 제공
○ 영국의 경우 런던 탱즈유역에 수자원 보호를 위하여, ‘스마트워터미터’ 프로젝트를 추진 가구 단위의 지능원격검침을 이용한 IoT 물환경 관리를 수행

270) Electronic Notice of Intent, http://water.epa.gov/polwaste/npdes/basics/eNOI.cfm
2-4. 물환경 통합 R&D 추진

가. 현황 및 문제점

○ 최근 5년간 물환경 관리 분야에 대한 R&D투자 규모는 3,384억 원으로 연평균 14.2%씩 성장(참고자료 2-4-1: 최근 5년간 부처별 물환경 R&D 투자 비중)
- 과제 개수로는 2008년 연간 208개에서 2012년 355개로 연평균 14.3% 증가

(단위 : 백만원)

<table>
<thead>
<tr>
<th>연도</th>
<th>투자액</th>
<th>과제 수</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008년</td>
<td>51,645</td>
<td>208</td>
</tr>
<tr>
<td>2009년</td>
<td>56,357</td>
<td>225</td>
</tr>
<tr>
<td>2010년</td>
<td>64,622</td>
<td>264</td>
</tr>
<tr>
<td>2011년</td>
<td>77,939</td>
<td>251</td>
</tr>
<tr>
<td>2012년</td>
<td>87,816</td>
<td>355</td>
</tr>
</tbody>
</table>

〈그림 2-4-1〉 국내 물환경 분야 R&D 투자 동향

○ 분야별로는 ‘상수/하폐수 관리’ 분야에 1,362억 원을 투자하며, 전체 투자의 40%를 차지(274)

273) 통합 물환경 개선 기술개발사업 (2014), <참고자료 2-4-1>
그 다음으로는 ‘수생태계 복원/보전’에 609억원(18%), ‘토양/지하수 관리’ 분야에 555억원(17%)를 투자

물환경 관련 R&D의 분야별, 연도별 투자 현황

- 분야별 투자 비중이 가장 높은 ‘상수/하폐수 처리’ 분야는 연평균 19.2% 수준의 성장세를 기록하며 물환경 관련 R&D 전체의 연평균 증가율 13.5%보다 높은 수치를 기록
- ‘하천수질관리’ 분야와 ‘방재’ 분야, ‘상수/하폐수 처리’, ‘토양/지하수’ 분야가 각각 연평균 32.3%, 23.1%, 19.2%, 17.7%씩 증가하며 높은 증가세를 기록
- 반면, ‘수생태계 복원/보전’ 분야의 경우 2010년 이후 투자 금액이 급격히 감소하며 연평균 -6.8%의 감소 추세를 기록

그림 2-4-2) 국내 물환경 R&D 분야별 투자 규모
○ 환경부 물환경 R&D의 경우 타 부처 대비 매우 높은 특허 출원/등록을 기록하며 기술적 성과는 우수하나, ‘점오염원 관리’, ‘정수처리’, ‘상수도 유량관리’ 및 ‘하수처리수의 재이용’ 등 분야 등 상하폐수 관련 분야를 제외하고 사업화 성과는 상대적으로 미비

○ <그림 2-4-3> 분야별 R&D 투자 추이

○ <그림 2-4-4> 부처별, 분야별 투자 비중 비교
이에 ‘상수/하폐수’외 물환경 분야 R&D 확대 등 물환경 분야 R&D 포트폴리오 조정을 통해 물환경 관련 유망 분야 발굴 추진 및 단일 R&D 사업을 통한 체계적 기술개발 필요

물환경 관리 기술개발을 위한 다양한 계획 중 R&D 사업으로 추진이 필요

- 수체 유해물질 관리, 물순환 개선 및 비점오염원 관리, 수생태계 건강성 및 서비스 증진, 물 재난/재해 국제 기술협력 강화, 범부처 조류 R&D 및 기초연구 필요

나. 주요대책

- 새로운 물환경 관리 관련 R&D 확대
- 글로벌 탑 프로젝트 등 R&D 와 연계한 사업단 산설
- 정부합동 R&D 추진

1. 새로운 물환경 관리 관련 R&D 확대

- 물순환개선, 유해물질관리, 비점오염원관리, 수생태 평가 및 복원 등 새로운 물환경 관련 R&D 분야 확대

- (물순환개선 및 비점오염원관리) 기후변화 및 도시화에 따른 물순환 체계를 평가할 수 있는 기환경유지용수 확보 및 공급기술이 개발될 필요성이 있으며, 이를 맞발침할 수 있는 모니터링 및 환경생태용수 산정모형 개발

- 발생원(도심, 공단 및 농촌) 특성에 따른 맞춤형 비점오염원 저감기술이 필요하며, 유지관리가 용이할 뿐만 아니라 제거 효율을 향상시킬 수 있는 추가 기술개발

- 기후 및 유역 환경 조건 변화에 선제적으로 대응할 수 있는 최적 비점오염원 저감시설 선정기술 및 물순환 환경 개선에 따른 복합영향 평가기술 개발 필요
제2차 물환경관리 기본계획

수질원격감시 시스템 개발

유해물질관리

○ (유해물질관리) 환경 매체 내 유해물질의 검출농도가 매우 낮기 때문에 고감도 정밀분석이 요구, 기존의 구축된 측정 장비를 통하여 저비용으로 검출할 수 있는 연구 수행 필요
 - 신규 정밀장비 도입이 불가피 할 경우 이를 국산 장비로 대체할 수 있는 기술 개발 수행
 - 가능하다면 수질원격감시 확대를 위하여 원격측정 센서 개발과 이를 뒷받침 하는 신규 모니터링 프로토콜 및 시스템 구축

<그림 2-4-5> 물순환 체계 평가 및 비점오염원 저감기술 선정 모식도

<그림 2-4-6> ICT와 IoT 기술을 활용한 수질 감시 시스템 예시도
- 수체 이외에 매체별 모니터링 기법 및 유해물질의 위해성을 통합적으로 진단할 수 있는 평가모델 개발 필요
- 매체 내 잔류량 산정 모델 개발 필요, 특히 하폐수장의 처리시설에 의하여 효율적으로 제거할 수 있는 기술개발이 병행
- 매체 내 검출율, 위해성 및 잔류가능성을 종합적으로 평가할 수 있는 지표가 개발될 필요성이 있으며, 이를 근거로 환경보전법상 특정유해물질로 지정 하거나 잡정 권고기준을 제시하는 정책연구 수행

○ (수생태계 평가 및 복원) 국내 수생태계에 대해 일관적으로 적용할 수 있는 건강성 평가 매트릭 분석기법의 개발
- 화학적 하천모니터링 프로그램에 포함하여 생물학적 상태를 평가할 수 있는 대표지점들이 선정 및 급격한 환경변화에 따른 수생태계 건강성 변화를 정밀하게 예측할 수 있는 모델 개발 병행
- 기후변화 및 유역 환경변화에 대응할 수 있는 수변상태 및 하천생태 복원 기술 및 하천수질 복원기술이 함께 개발
- 수생태계 건강성 악화 또는 개선으로 인한 수자원 가치변동을 평가할 수 있는 모델 및 수생태계 자원 활용을 통한 생태관광 프로그램의 개발

자료 : US EPA, 820-F-11-006

〈그림 2-4-7〉하천의 오염도에 따른 지표생물군 변화
다. 향후 추진 일정

- 새로운 물환경 관리 관련 R&D 확대(’16～’25)
- 글로벌 탑 프로젝트 등 R&D와 연계한 사업단 신설(’16～’25)
- 법부처 R&D의 지속적인 추진 및 기초연구 시행(’16～’25)
최근 5년간 부처별 물환경 R&D 투자 비중

○ 환경부가 2,557억원을 투자하여, 전체 투자의 76%를 차지
 - 국토해양부가 367억원(11%), 교육과학기술부가 213억원(6%)을 투자

[그림 6-8] 국내 물환경 R&D 부처별 투자 규모

부처별 연간 평균 연구비(2.6억원)

○ 행전안전부가 4억원으로 가장 크고, 그 다음으로 국토해양부 3.5억원, 환경부 3.0억원 순

[그림 6-9] 부처별 과제당 연간 평균 연구비
물환경 관련 R&D의 부처별, 연도별 투자 현황 및 과제 개수

〈부처별 물환경 R&D 투자 추이〉
(단위 : 백만원, %)

<table>
<thead>
<tr>
<th>구분</th>
<th>2008년 금액</th>
<th>2009년 금액</th>
<th>2010년 금액</th>
<th>2011년 금액</th>
<th>2012년 금액</th>
<th>합계 금액</th>
</tr>
</thead>
<tbody>
<tr>
<td>교육과학기술부</td>
<td>5,381</td>
<td>7,430</td>
<td>7,354</td>
<td>511</td>
<td>596</td>
<td>21,272</td>
</tr>
<tr>
<td>개수</td>
<td>34</td>
<td>44</td>
<td>47</td>
<td>10</td>
<td>12</td>
<td>147</td>
</tr>
<tr>
<td>국토해양부</td>
<td>5,197</td>
<td>6,809</td>
<td>10,726</td>
<td>7,577</td>
<td>6,392</td>
<td>36,701</td>
</tr>
<tr>
<td>개수</td>
<td>2</td>
<td>32</td>
<td>38</td>
<td>11</td>
<td>21</td>
<td>104</td>
</tr>
<tr>
<td>농림수산식품부</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>270</td>
<td>770</td>
<td>1,040</td>
</tr>
<tr>
<td>개수</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>중소기업청</td>
<td>2,329</td>
<td>1,977</td>
<td>3,147</td>
<td>3,608</td>
<td>4,294</td>
<td>15,355</td>
</tr>
<tr>
<td>개수</td>
<td>19</td>
<td>11</td>
<td>20</td>
<td>45</td>
<td>41</td>
<td>136</td>
</tr>
<tr>
<td>행정안전부</td>
<td>1,077</td>
<td>1,161</td>
<td>1,450</td>
<td>2,790</td>
<td>1,808</td>
<td>8,286</td>
</tr>
<tr>
<td>개수</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>환경부</td>
<td>37,661</td>
<td>38,980</td>
<td>41,945</td>
<td>63,183</td>
<td>73,956</td>
<td>255,725</td>
</tr>
<tr>
<td>개수</td>
<td>149</td>
<td>135</td>
<td>156</td>
<td>182</td>
<td>264</td>
<td>886</td>
</tr>
<tr>
<td>총합계</td>
<td>51,645</td>
<td>56,357</td>
<td>64,622</td>
<td>77,939</td>
<td>87,816</td>
<td>338,379</td>
</tr>
<tr>
<td>개수</td>
<td>208</td>
<td>225</td>
<td>264</td>
<td>251</td>
<td>355</td>
<td>1,303</td>
</tr>
</tbody>
</table>

분야별 연간 평균 연구비(2.6억 원)

- '수생태계 복원/보전' 분야가 3.91억원으로 가장 크고, 그 다음으로 '방재' 분야가 3.88억원, '상수/하폐수 관리' 분야가 3.0억원, '토양/지하수 관리' 분야가 2.6억원 순으로 평균 연구비 이상을 기록.

![분야별 과제당 연간 평균 연구비](image)
물환경 관련 R&D의 분야별, 연도별 투자 현황 및 과제 개수
(단위: 백만 원, %)

<table>
<thead>
<tr>
<th>구분</th>
<th>2008년 금액</th>
<th>2009년 금액</th>
<th>2010년 금액</th>
<th>2011년 금액</th>
<th>2012년 금액</th>
<th>합계 금액</th>
</tr>
</thead>
<tbody>
<tr>
<td>상수/하폐수</td>
<td>21,332</td>
<td>17,972</td>
<td>18,625</td>
<td>34,593</td>
<td>43,656</td>
<td>136,178</td>
</tr>
<tr>
<td>개수</td>
<td>78</td>
<td>58</td>
<td>58</td>
<td>120</td>
<td>147</td>
<td>461</td>
</tr>
<tr>
<td>수생태계복원/보전</td>
<td>13,192</td>
<td>12,250</td>
<td>15,043</td>
<td>10,079</td>
<td>10,365</td>
<td>60,929</td>
</tr>
<tr>
<td>개수</td>
<td>23</td>
<td>23</td>
<td>41</td>
<td>31</td>
<td>38</td>
<td>156</td>
</tr>
<tr>
<td>토양/지하수</td>
<td>6,773</td>
<td>10,474</td>
<td>11,270</td>
<td>13,795</td>
<td>13,213</td>
<td>55,525</td>
</tr>
<tr>
<td>개수</td>
<td>30</td>
<td>41</td>
<td>43</td>
<td>40</td>
<td>56</td>
<td>210</td>
</tr>
<tr>
<td>수량/물순환관리</td>
<td>5,564</td>
<td>10,658</td>
<td>12,003</td>
<td>8,268</td>
<td>7,268</td>
<td>43,761</td>
</tr>
<tr>
<td>개수</td>
<td>30</td>
<td>66</td>
<td>68</td>
<td>24</td>
<td>32</td>
<td>220</td>
</tr>
<tr>
<td>하천수질관리</td>
<td>3,303</td>
<td>3,540</td>
<td>4,512</td>
<td>7,675</td>
<td>10,830</td>
<td>29,860</td>
</tr>
<tr>
<td>개수</td>
<td>25</td>
<td>22</td>
<td>31</td>
<td>29</td>
<td>69</td>
<td>176</td>
</tr>
<tr>
<td>방재</td>
<td>817</td>
<td>831</td>
<td>1,450</td>
<td>2,790</td>
<td>1,878</td>
<td>7,766</td>
</tr>
<tr>
<td>개수</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>기타</td>
<td>664</td>
<td>632</td>
<td>1,719</td>
<td>740</td>
<td>605</td>
<td>4,360</td>
</tr>
<tr>
<td>개수</td>
<td>19</td>
<td>13</td>
<td>20</td>
<td>5</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>총합계</td>
<td>51,645</td>
<td>56,357</td>
<td>64,622</td>
<td>77,940</td>
<td>87,815</td>
<td>338,380</td>
</tr>
<tr>
<td>개수</td>
<td>208</td>
<td>225</td>
<td>264</td>
<td>251</td>
<td>355</td>
<td>1,303</td>
</tr>
</tbody>
</table>

물환경 관련 R&D의 부처별, 분야별 투자 비중 분석 결과, 부처별 특성
- 교육과학기술부, 행정안전부, 중소기업청은 각각 ‘수량/물순환 관리’ 분야와 ‘방재’ 분야, ‘상수/하폐수 관리’ 분야 등 특정 분야에 투자가 집중
- 국토해양부는 ‘수생태계 복원/보전’ 분야와 ‘수량/물순환 관리’ 분야, 농림수산식품부는 ‘하천수질관리’ 분야와 ‘수량/물순환 관리’분야, ‘상수/하폐수 관리’ 분야 등 특정 분야에 집중
- 환경부는 ‘수량/물순환 관리’ 분야와 ‘방재’ 분야를 제외한 나머지 분야에 골고루 투자

![부처별, 분야별 투자 비중 비교](chart.png)
주요 선진국은 물환경관리의 통합시스템, 정보통신기술 기반 스마트 시스템 구축에 주력

수체 유해물질 관리

- 미국 및 유럽의 선진국들의 경우, 범용적인 사용을 추진하는 신규 화학물질에 대하여 물리화학적 특성 및 전통적인 생체지표를 사용한 사망도 생장률, 변색률 연구에 기반한 급성 및 만성 독성 평가결과를 연방정부에 제출할 것을 의무화하고 있으며, 이후 제출된 자료를 자체 운용 중인 환경평가모델들의 입력자료로 사용하여 매체별 전류 농도 및 위해성을 평가, 이 결과에 따라 신규 화학물질의 등록, 평가, 허가 및 제한 등을 규제 수행

- 미국의 경우 정부기관(예시: USGS)을 중심으로 수체 내 유해물질에 대한 별도의 모니터링 프로그램을 운용하여 그 결과를 시민에게 공개하고 있으며, 수체 종류, 측정 및 모니터링 방법, 화합물질의 특성 및 사용용도, 대사물질 및 위해성 등을 보고서에 상세히 기록 (그림 6-5)

- 특히 미국 EPA의 경우 음용수를 위한 1차 및 2차 우선관심 오염물질 이외에 연방수질오염 관리법에 따라 현재 규제 대상이 되고 있지 않지만 음용수에 자주 발견되고 안전음용수법에 따라 관리가 필요하다고 판단되는 오염보물질(Contaminant Candidate List 1-3)을 분류하고 모니터링을 진행

[그림: 미국 지하수 관정 내 튀발성 유기화합물 모니터링 결과]
물순환 개선 및 비점오염원 관리

○ 미국을 비롯한 유럽 선진국들은 1990년대 이후 도시화에 의한 수질 및 수생태계 영향에 대한 기초 연구를 진행하였으며, 현재 다양한 기술 개발 및 적용 단계에 도달
 - 미국 EPA의 경우, 5대호 중의 하나인 이리호 (Lake Erie)에서 발생하는 조류 발생의 원인이 유역의 농경지에 살포되는 퇴적물로 인해 발생하였으며, 도시 지역으로부터 유출되는 비점오염원으로 인해 Carter Lake의 조류 발생 상황이 악화되고 있음을 규명
 - 미국은 스마트 성장의 기조 아래 LID와 GSI를 물 환경 및 물 순환 관련 주요 정책 방향으로 삼고 있음
 - 물 순환 및 물 환경 융복합 분야에서 다른 선진국들의 접근은 환경 유지 용수 확보, 물 순환 체계 구축, 비점오염 관리 및 물 순환 관리 등으로 정리되며, 이를 통해 도시 열섬 현상 저감, 비점오염 관리, 수질 관리 및 수생태계 건전성 확보 등을 목표

〈주요 국가별 물순환 및 물환경 융복합 연구〉

<table>
<thead>
<tr>
<th>국가</th>
<th>물순환 및 물환경 개선 R&D</th>
</tr>
</thead>
<tbody>
<tr>
<td>미국</td>
<td>저영향 개발(LID)과 GSI (Green Infrastructure)</td>
</tr>
<tr>
<td>독일</td>
<td>분산형 DUD (Decentralized Urban Design)</td>
</tr>
<tr>
<td>영국</td>
<td>분산형 SUDs (Sustainable Urban Drainages)</td>
</tr>
<tr>
<td>한국</td>
<td>저영향 개발(LID)과 GSI (Green Stormwater Infrastructure)</td>
</tr>
</tbody>
</table>

수생태계 건강성 및 서비스 증진

○ 대부분의 유럽 국가들은 저서성 대형무척추동물을 이용하여 하천의 생물학적 수질평가를 주로 수행하여 왔으며, 국가에 따라 하천의 생물학적 상태를 평가하는 특별 프로그램을 운용하거나 화학적 하천모니터링 프로그램에 포함하여 생물학적 상태를 평가하고 있음
 - 미국의 환경부는 4년마다 50-200 개의 생물모니터링 조사를 실시하고 있으며, 수체에 서식하는 지표생물군을 이용하여 생물 메트릭(Biological metrics) 또는 다중 메트릭 지표 (Multimetic index)를 산정한 후 수질 및 생물학적 상태의 교란정도를 판별 중
제2차 물환경관리 기본계획 별록

부록 제3부 기반 및 역량 강화 전략

영국

자료: 국립환경과학원, 수생태계 건강성 조사 및 평가체계 구축을 위한 조사구간 선정 등 현장 정밀조사

〈주요 선진국 수생태 건강성 평가결과〉

◈ 물재난/재해 국제 기술협력 강화

○ 국제홍수관리 공동프로그램(Associated Programme on Flood Management)은 세계기상기구(World Meteorological Organization)의 제안으로 시작된 프로젝트로, 2001년부터 통합홍수관리(Integrated Flood Management)의 원칙을 수립하고, 현재 홍수관리 방안과 통합 홍수관리 접근법의 차이를 제시하면서 관련 기관들의 참여를 유도하는 데 중점을 두고 활동

- 유엔 아시아 태평양 경제 사회 위원회(United Nations Economic and Social Commission for Asia and the Pacific)와 세계기상기구에서 공동 운영하는 태풍 위원회는 각 국가의 기상 재해 정보와 아시아 및 태평양 지역의 상시적인 수문·기상학적 모니터링을 통해 극한 기상재해에 대한 빠른 예·경보 발령 및 수자원 확보 방안을 마련 중
3. 재정관리 효율화

<table>
<thead>
<tr>
<th>종전 대책</th>
<th>2025 대책</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 환경기초시설 설치 중심 투자</td>
<td>• 환경기초시설 설치 중심 투자</td>
</tr>
<tr>
<td>• 사어별 우선관리대상에 지원</td>
<td>• 사어별 우선관리대상에 지원</td>
</tr>
<tr>
<td>• 국가 지원체계 중심</td>
<td>• 국가 지원체계 중심</td>
</tr>
</tbody>
</table>

3-1. 국고지원사업의 성과 분석 및 투자우선순위 정립

가. 현황 및 문제점

- 사후평가시스템 미흡으로 예산운용의 비효율성 발생
 - ’13∼’17년까지 환경예산 투자계획을 보면 연간 약 6조 3천원이 투자되고, 이중 상하수도와 수질이 약 4조원으로 가장 큰 비중을 차지
 - 하수처리장, 공단폐수처리시설 등 환경기초시설 확충과 하수관거 정비 등이 높은 비중을 차지함

- 사후평가시스템 미흡으로 예산운용의 비효율성 발생
 - 하수처리장, 하수관거 등 지자체 개발사업에 대한 국고보조율이 꾸준히 조정되어 왔으나, 신설 및 교체에 대한 지원율이 개보수 지원율 보다 높아 합리적인 예산분배와 개보수 유인이 낮은 실정

- 국고지원사업으로 추진되는 사업에 대해 사후평가시스템이 미흡하여 비 효율적으로 예산이 운영되고 있음

275) 환경예산과 예산제도(환경부 기획재정담당관실, 2014)
276) 예를 들어 광역시의 하수관거보수에 대한 국고보조율은 10%인 반면, 신설 및 교체에 대한 지원율은 30%이고, 농어촌마을하수도 정비에 대한 국고보조율은 70%인 반면 개량사업에 대한 보조율은 30% 불과하다.(환경부, 2015, 하수도본부 보조금 편성 및 집행관리 실무요령)
나. 주요대책

- 미래 수요에 대응한 재원배분체계 개선
- 수질개선사업 투자 우선순위 재정립
- 수질부문 재정투자의 효율성 제고

[Box]

 미래 수요에 대한 재원배분체계 개선

○ 하수관계 정비, 비점오염원 관리, 수생태계 복원 등 새로운 재정수요 분야에 중점 투자
 - 기존 환경기초시설 등의 인프라는 자산관리시스템과 같이 유지관리비용을 절감할 수 있는 방안 마련
 - 환경기초시설 등 상당 수준에 도달한 부분에 대한 투자는 단계적으로 축소하거나 국조보조율을 조정하는 방식으로 조정하고, 물 복지, 조류 대응 등 미래의 물환경 여건을 고려하여 재원배분체계를 개선 필요
 - 규모 위주의 사업 보다는 내실 있는 사업을 통해 효율적인 예산배분이 가능하도록 국고보조율의 합리적 조정
 - 비점오염원에 대한 오염원인자부담원칙 적용방안 모색(예: “비점오염원세” 등을 부과)
 - 산업폐수처리장의 TMS 설치 및 제도개선 등을 통해 수질배출부과금 세입 규모 확대 및 징수율 제고(‘04년도 징수율 11.6%)

수질개선사업 투자 우선순위 재정립

○ 환경기초시설의 경우 도농간 격차 해소를 위한 환경정의 실현, 연안지역의 수질개선을 위한 투자에 주력
 - 하수도 서비스의 도농간 격차 해소를 위해 농어촌 지역의 환경기초시설 투자 및 지원 확대
- 하수관계 재정투자사업의 전국적 우선순위를 설정하여 상수원 지역, 연안 지역, 저농도 하수처리장 지역 등의 하수관계를 우선적으로 정비

- 수질부문 재정투자의 효율성 제고

 - 성과주의 예산제도에 바탕을 둔 사후평가제도 도입 추진
 - 국고지원사업에 대해 사업별 성과지표와 측정방법을 개발하여 사업성과를 평가하고 이를 예산편성 및 집행과 연동하는 시스템 구축
 - 단순히 예산의 투입과 집행만으로 평가하기 보다는 실제 사업으로 인한 효과(예를 들면 하수처리장 증설에 따른 부하량 삭감 및 수질개선효과)에 근거하여 사업성과를 평가
 - 지자체 보조금 신청에 대한 체계적 사전 검토 시스템을 구축
 - 당해사업의 적정 시설규모 및 추진 가능성 등에 대한 충분한 검토 후에 예산을 편성하고 신규 시설은 타당성 조사, 기본조사, 실시설계 등 기초 조사 결과에 따라 사업비를 지원

다. 향후 추진 일정

 - 성과주의예산제도에 바탕을 둔 사후평가제도 도입(’16~)
3-2. 재원조달의 원칙 확립

가. 현황 및 문제점

- 하수도 서비스에 대한 사용자/오염자 부담원칙의 적용 미흡
 - 현재 하수도 요금의 현실화율은 38.5%로 지자체가 하수도사업에 소요되는 예산을 부담하는데 따른 재정악화로 인해 물관리 정책 차질
 - 하수도요금은 하수처리 서비스의 공급에 대한 사용료의 성격을 가지므로 사용자 부담원칙이 적용되지만, 한편으로는 오염자의 처리의무를 대행하는 서비스에 대한 대가이므로 오염자 부담원칙이 적용

- 현행 배출부과금제도는 직접규제 성격이 강하여 배출량 저감에 대한 경제적 유인제도로서의 역할 미흡
 - 배출허용기준 초과시 납부 능력보다 과다한 초과부과금이 부과(형벌적 성격)되어 부과금 납부에 대한 거부감 팽배함

- 현행 환경관련 다수의 부담금제도(수질분야)는 부과체계가 유사하여 중복부과 논란을 야기하거나, 소기의 환경개선 효과를 달성하지 못하는 등의 한계 노출
 - 수질배출부과금(기본)과 환경개선부담금(수질시설물)은 부과매체와 부과 목적이 동일
 - 수질배출부과금(초과)과 총량초과부과금(3대강법)은 부과체계가 동일
 - 축산폐수배출부과금(기본)은 낮은 요율로 인해 방류수 수질기준 준수 유인 기능 미흡
 - 하수도법상의 원인자부담금과 손괴자부담금은 도입목적이 단순히 발생비용의 회수일 뿐 원인자와 손괴자에 대한 경제적 유인기능이 없어서 부과에 따른 환경개선효과가 거의 없음

277) 최근 5년간 (‘07년~‘11년) 평균징수율이 10.3%로 환경관련부담금 중 징수율이 가장 낮은 수준
- 환경오염방지사업비용부담금은 환경오염방지시설의 설치와 운영에 소요되는 비용을 회수하는 사용료 성격을 지님

- 하수처리구역내의 지역 주민간 환경관리 부담 격차 해소 필요
 - 하수처리구역내의 경우 하수도요금 납부만으로 오염배출에 대한 의무가 해결되나 하수처리구역외의 경우 개별하수처리시설의 설치 및 관리 감시에 따른 측정 등의 추가 부담으로 형평성 문제 발생

나. 주요대책

- 하수도요금 현실화 및 하수도 요금 체계정비
- 배출부과금 부과체계 개선을 통한 저감 유인책 마련 및 정수율 제고
- 수질분야 부담금 부과체계 정비
- 하수처리 서비스 제공의 형평성 제고

- 하수도요금 현실화 및 하수도 요금 체계정비
 - 오염자/사용자 부담원칙을 강화하여 기본사용료(시설투자비)와 종량 및 수질 사용료를 부과
 - 배출되는 오수의 수질에 차이가 많이 발생하기 때문에 수질의 차이 고려
 - 하수도법 시행령을 개정하여 최저사용제278)에 대한 규정 신설
 - 지자체마다 상이한 구간체계를 가지지 않도록 용도별 기본료와 누진 구간 체계의 통일성을 마련

- 하수도 요금 현실화의 단계적 추진
 - ’14년 행정자치부의 권고에 따라 각 지자체별로 요금 인상률을 정하여 단계적으로 하수도 요금을 현실화하고 있는 추세279)

278) 사용료제계가 관거나 하수처리장 등 시설투자비에 해당하는 고정비와 하수도의 처리 및 운영에 소요되는 변동비로 구성되어 있기 때문에 기본사용료와 종량사용료로 부과하는 최저사용료제도가 적용배출되는 오수의 수질에 차이가 많이 발생하고 있기 때문에 수질의 차이를 고려한 후 적용종량 및 수질 사용료를 기준으로 하되 시설투자비를 회수하기 위한 기본료를 더하는 방식이 더 타당함
- 하수도 사용료를 처리원가 대비 현행 38.5% 수준에서 1단계(’16∼’20) 70% 수준, 2단계(’21∼’25) 95% 수준까지 상향조정

▪ 배출부과금 부과체계 개선: 저감 유인책 마련 및 징수율 제고
 - 초과부과금 산정시 과중한 부과의 원인이 되는 누적적·중복적 부과 계수 일부 완화 또는 폐지
 - 사업장 종별 부과계수 폐지 및 연도별 산정지수 완화 등
 - 기본 및 초과부과금 부과함목 확대
 - (기본부과금) 2개 항목(유기물질, 부유물질) → 4개 항목(총인, 총질소 추가)
 - (초과부과금) 19개 항목 → 42개 항목
 - 폐수처리기술의 발전과 경제여건의 변화 등 변화된 여건을 반영하여 단위 중량당 부과금액 현실화
 - 환경피해 및 처리 비용, 수생태계 위해성 정도 등을 고려한 오염물질별 객관적 요율(처리비용) 산정하여 적용

▪ 수질분야 부담금 부과체계 정비
 - 수질분야 부담금제도를 환경개선 유인효과 중대 및 중복부과 방지 등의 방향으로 제도개편 추진
 - 환경오염방지사업 비용부담금의 사용료 전환
 - 환경시설부담금(시설물)과 수질배출(기본)부과금 통합부과
 - 하수도법상 원인자부담금과 손괴자부담금의 통합
 - 축산폐수배출처리 부과금의 과태로 전환 등

279) 행정자치부는 지난해 각 자치단체에 상하수도 요금 현실화율을 오는 2017년까지 상향하도록 권고했다. 권고안에 따르면, 2020년 말까지 70% 수준, 2025년 말까지 95% 수준까지 상향조정할 계획이다.
■ 하수처리 서비스 제공의 형평성 제고

- 하수처리구역 외에 위치한 개별 하수처리시설에 대한 하수처리비용 경감 방안 마련(‘08)
 - 하수처리구역 내의 하수처리요금과 개별 하수처리시설의 처리비용 비교 검토 및 격차 해소 방안 마련
 - 하수처리구역 외 지역의 처리시설에 대한 전문관리기관 위탁관리 및 간접 지원을 통한 형평성 제고 방안 강구

- 개별오수처리시설의 하수처리구역 편입시 적정 하수 원인자 부담금 제도화

다. 향후 추진 일정

- 하수도 사용료의 요금 현실화(계속)
- 전문가 자문회의, 지자체·배출업소 등 배출업소 의견수렴, 최종 개선안 확정(‘16)
- 배출부과금 제도개선을 위한 수질법 및 하위법령 개정 추진(‘17)
 ※ 기재부 「부과금 심의위원회 심의」 및 「규제개혁 심의」 등 필요
- 개별오수처리시설의 하수처리구역 편입시 적정 하수 원인자 부담금 제도화
- 수질분야 부담금의 부과체계 개편(‘17∼’19)
- 하수처리구역내/외 하수처리서비스 비용 격차 해소 방안 마련(‘18)
제 2차 환경관리 기본계획 부록

 참고자료 3-2-1

<table>
<thead>
<tr>
<th>부과기준</th>
<th>기본배출부과금</th>
<th>초과배출부과금</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 배출허용기준 이하로 배출되나. 종말처리시설 방류수 수질기준 초과</td>
<td>• 배출허용기준 초과</td>
</tr>
<tr>
<td></td>
<td>• 하. 매수종말처리시설의 배출되는 폐수 중 오염물질이 방류수 수질기준 초과</td>
<td>• 매수방류배출시설에서 공공수역에 오염물질 방류</td>
</tr>
<tr>
<td>부과대상</td>
<td>유기물질(BOD, COD), 부유물질</td>
<td>19종</td>
</tr>
<tr>
<td>오염물질</td>
<td>매 반기별로 부과(연2회)</td>
<td>배출허용기준 초과시부터 개선완료시까지</td>
</tr>
<tr>
<td>부과기간</td>
<td>사업자가 제출한 자료를 기본으로 하여 조정</td>
<td>행정기관의 점검결과</td>
</tr>
<tr>
<td>부과금 산정방법</td>
<td>자진 개선계획서 제출</td>
<td>자진 개선계획서 제출</td>
</tr>
</tbody>
</table>

국외 사례 3-2-1

OECD 국가들 중 대부분 우리나라보다 하수도요금이 높아
- OECD 국가들의 경우, 관리비용 회수 면에서 요금의 역할이 커짐 280)
 - 가정용 상하수도 요금의 실질 가격이 꾸준히 상승하는 추세이며, 대부분 하수도 요금의 증가로 이어지고 있음
 - 서울보다 하수도요금이 낮은 도시는 4개에 불과해 한국의 하수도 요금이 다른 나라에 비해 낮은 수준
 - 배출된 오염물을 $3.014으로 가장 높은 수치를 기록, 시드니와 뉴질랜드의 오염물질 순으로 제곱미터당 하수도 요금이 높음
 - 반면, 서울의 하수료 요금은 29개 도시 중 24번째에 해당 281)

네덜란드: 하수처리 제한마련을 목적으로 배출부과금 도입
- 네덜란드는 배출부과금제도를 하수처리를 위한 제한마련을 목적으로 도입하였고 BOD와 중금속 농도에 비례하여 부과
 - 가게와 소규모 기업, 배출된 오염부하량에 관계없이 일정액 부과
 - 대규모 기업, 실측치를 기준으로 배수배출부과금이 부과되어 대기업의 오염방지에 효과가 있던 것으로 평가, 수온 등 수질 요소와 수량, 수심, 하상구조 등 수문지형학적 요소가 평가과정에서 고려, 그러나 이들은 보조적 역할

280) 물 사용 비용과 외부효과를 가격에 세대로 반영하기 위해 취수부담금, 오염부담금 및 거래가능한 물 사용권과 같은 경제적 정책수단의 활용 역시 중시하고 있다.
281) Tariff Sruvey (Global Water Intelligence, 2011)